論文の概要: GD doesn't make the cut: Three ways that non-differentiability affects neural network training
- arxiv url: http://arxiv.org/abs/2401.08426v4
- Date: Tue, 05 Nov 2024 19:57:19 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-11-07 19:21:16.757961
- Title: GD doesn't make the cut: Three ways that non-differentiability affects neural network training
- Title(参考訳): GDはカットしない:非微分可能性がニューラルネットワークトレーニングに影響を及ぼす3つの方法
- Authors: Siddharth Krishna Kumar,
- Abstract要約: 応用非微分可能関数(NGDM)と古典勾配降下関数(GD)の区別について検討する。
正規化の増加は、NGDMにおける最適解の$L_1$ノルムの増加につながることを示す。
また、ネットワークプルーニングに広く採用されている$L_1$ization-based techniqueは、期待された結果を得られないことを示す。
- 参考スコア(独自算出の注目度): 5.439020425819001
- License:
- Abstract: This paper investigates the distinctions between gradient methods applied to non-differentiable functions (NGDMs) and classical gradient descents (GDs) designed for differentiable functions. First, we demonstrate significant differences in the convergence properties of NGDMs compared to GDs, challenging the applicability of the extensive neural network convergence literature based on $L-smoothness$ to non-smooth neural networks. Next, we demonstrate the paradoxical nature of NGDM solutions for $L_{1}$-regularized problems, showing that increasing the regularization penalty leads to an increase in the $L_{1}$ norm of optimal solutions in NGDMs. Consequently, we show that widely adopted $L_{1}$ penalization-based techniques for network pruning do not yield expected results. Additionally, we dispel the common belief that optimization algorithms like Adam and RMSProp perform similarly in non-differentiable contexts. Finally, we explore the Edge of Stability phenomenon, indicating its inapplicability even to Lipschitz continuous convex differentiable functions, leaving its relevance to non-convex non-differentiable neural networks inconclusive. Our analysis exposes misguided interpretations of NGDMs in widely referenced papers and texts due to an overreliance on strong smoothness assumptions, emphasizing the necessity for a nuanced understanding of foundational assumptions in the analysis of these systems.
- Abstract(参考訳): 本稿では,非微分可能関数(NGDM)に適用される勾配法と,微分可能関数用に設計された古典的勾配勾配(GD)との区別について検討する。
まず、NGDMの収束特性をGDと比較し、L-smoothness$に基づく広範ニューラルネットワーク収束文献の適用性に挑戦する。
次に,正規化ペナルティの増加は,NGDMにおける最適解の標準である$L_{1}$の増加につながることを示す。
その結果,ネットワークプルーニングにおいて,L_{1}$のペナライズに基づく手法が広く採用されていることは期待できないことがわかった。
さらに、Adam や RMSProp のような最適化アルゴリズムは、微分不可能な文脈でも同様に機能する、という一般的な信念を排除します。
最後に、リプシッツ連続凸微分関数にも適用不可能であることを示し、非凸微分可能ニューラルネットワークとの関連性について検討する。
本分析では, 強い滑らか性仮定への過度な依存から, 広く引用されている論文やテキストにおいて, NGDMの誤った解釈を提示し, 基礎的仮定の微妙な理解の必要性を強調した。
関連論文リスト
- On the Convergence Analysis of Over-Parameterized Variational Autoencoders: A Neural Tangent Kernel Perspective [7.580900499231056]
変分自動エンコーダ(VAE)は、生成タスクの強力な確率モデルとして登場した。
本稿では, 軽微な仮定の下でのVAEの数学的証明について述べる。
また、過剰に最適化されたSNNが直面する最適化問題と、カーネルリッジ(KRR)問題との新たな接続を確立する。
論文 参考訳(メタデータ) (2024-09-09T06:10:31Z) - Convergence of Implicit Gradient Descent for Training Two-Layer Physics-Informed Neural Networks [3.680127959836384]
暗黙の勾配降下(IGD)は、ある種のマルチスケール問題を扱う場合、共通勾配降下(GD)よりも優れる。
IGDは線形収束速度で大域的に最適解を収束することを示す。
論文 参考訳(メタデータ) (2024-07-03T06:10:41Z) - Physics-Informed Neural Networks: Minimizing Residual Loss with Wide Networks and Effective Activations [5.731640425517324]
特定の条件下では、広いニューラルネットワークによってPINNの残留損失を世界規模で最小化できることを示す。
良好な高次導関数を持つ活性化関数は、残留損失を最小限に抑える上で重要な役割を果たす。
確立された理論は、PINNの効果的な活性化関数の設計と選択の道を開く。
論文 参考訳(メタデータ) (2024-05-02T19:08:59Z) - Benign Overfitting in Deep Neural Networks under Lazy Training [72.28294823115502]
データ分布が適切に分離された場合、DNNは分類のためのベイズ最適テスト誤差を達成できることを示す。
よりスムーズな関数との補間により、より一般化できることを示す。
論文 参考訳(メタデータ) (2023-05-30T19:37:44Z) - Globally Optimal Training of Neural Networks with Threshold Activation
Functions [63.03759813952481]
しきい値アクティベートを伴うディープニューラルネットワークの重み劣化正規化学習問題について検討した。
ネットワークの特定の層でデータセットを破砕できる場合に、簡易な凸最適化の定式化を導出する。
論文 参考訳(メタデータ) (2023-03-06T18:59:13Z) - Implicit Stochastic Gradient Descent for Training Physics-informed
Neural Networks [51.92362217307946]
物理インフォームドニューラルネットワーク(PINN)は、前方および逆微分方程式問題の解法として効果的に実証されている。
PINNは、近似すべきターゲット関数が高周波またはマルチスケールの特徴を示す場合、トレーニング障害に閉じ込められる。
本稿では,暗黙的勾配降下法(ISGD)を用いてPINNを訓練し,トレーニングプロセスの安定性を向上させることを提案する。
論文 参考訳(メタデータ) (2023-03-03T08:17:47Z) - Stability and Generalization Analysis of Gradient Methods for Shallow
Neural Networks [59.142826407441106]
本稿では,アルゴリズム安定性の概念を活用して,浅層ニューラルネットワーク(SNN)の一般化挙動について検討する。
我々は、SNNを訓練するために勾配降下(GD)と勾配降下(SGD)を考慮する。
論文 参考訳(メタデータ) (2022-09-19T18:48:00Z) - Approximation Power of Deep Neural Networks: an explanatory mathematical
survey [0.0]
本調査の目的は、ディープニューラルネットワークの近似特性の説明的レビューを行うことである。
我々は、ニューラルネットワークが他の古典的線形および非線形近似法より優れている理由と理由を理解することを目的としている。
論文 参考訳(メタデータ) (2022-07-19T18:47:44Z) - Momentum Diminishes the Effect of Spectral Bias in Physics-Informed
Neural Networks [72.09574528342732]
物理インフォームドニューラルネットワーク(PINN)アルゴリズムは、偏微分方程式(PDE)を含む幅広い問題を解く上で有望な結果を示している。
彼らはしばしば、スペクトルバイアスと呼ばれる現象のために、ターゲット関数が高周波の特徴を含むとき、望ましい解に収束しない。
本研究は, 運動量による勾配降下下で進化するPINNのトレーニングダイナミクスを, NTK(Neural Tangent kernel)を用いて研究するものである。
論文 参考訳(メタデータ) (2022-06-29T19:03:10Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Analytical aspects of non-differentiable neural networks [0.0]
本稿では、量子化されたニューラルネットワークの表現性と、微分不可能なネットワークに対する近似手法について論じる。
ここでは,QNN が DNN と同じ表現性を持つことを示す。
また,Heaviside型アクティベーション関数を用いて定義されたネットワークについても検討し,スムーズなネットワークによるポイントワイズ近似の結果を証明した。
論文 参考訳(メタデータ) (2020-11-03T17:20:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。