論文の概要: DOO-RE: A dataset of ambient sensors in a meeting room for activity
recognition
- arxiv url: http://arxiv.org/abs/2401.08962v1
- Date: Wed, 17 Jan 2024 04:21:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 16:59:29.065585
- Title: DOO-RE: A dataset of ambient sensors in a meeting room for activity
recognition
- Title(参考訳): DOO-RE: 活動認識のための会議室における環境センサのデータセット
- Authors: Hyunju Kim and Geon Kim and Taehoon Lee and Kisoo Kim and Dongman Lee
- Abstract要約: 環境センサを備えた会議室から収集したデータセットを構築した。
データセットであるDOO-REには、SoundやProductorなど、さまざまな環境センサタイプからのデータストリームが含まれている。
私たちの知る限りでは、DOO-REは信頼できるアノテーションを備えた実際の会議室で、シングルアクティビティとグループアクティビティの両方の認識をサポートする最初のデータセットです。
- 参考スコア(独自算出の注目度): 2.2939897247190886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancement of IoT technology, recognizing user activities with
machine learning methods is a promising way to provide various smart services
to users. High-quality data with privacy protection is essential for deploying
such services in the real world. Data streams from surrounding ambient sensors
are well suited to the requirement. Existing ambient sensor datasets only
support constrained private spaces and those for public spaces have yet to be
explored despite growing interest in research on them. To meet this need, we
build a dataset collected from a meeting room equipped with ambient sensors.
The dataset, DOO-RE, includes data streams from various ambient sensor types
such as Sound and Projector. Each sensor data stream is segmented into activity
units and multiple annotators provide activity labels through a
cross-validation annotation process to improve annotation quality. We finally
obtain 9 types of activities. To our best knowledge, DOO-RE is the first
dataset to support the recognition of both single and group activities in a
real meeting room with reliable annotations.
- Abstract(参考訳): iot技術の進歩により、マシンラーニングメソッドによるユーザアクティビティの認識は、ユーザにさまざまなスマートサービスを提供する有望な方法である。
プライバシー保護を備えた高品質なデータは、そのようなサービスを現実世界に展開する上で不可欠である。
周囲のセンサーからのデータストリームは、その要件に適しています。
既存の環境センサデータセットは制約付きプライベートスペースのみをサポートしており、その研究への関心が高まりつつも、パブリックスペース向けのデータセットはまだ検討されていない。
このニーズを満たすために,環境センサを備えた会議室から収集したデータセットを構築する。
データセットであるDOO-REには、SoundやProjectorなど、さまざまな環境センサタイプのデータストリームが含まれている。
各センサデータストリームはアクティビティユニットにセグメント化され、複数アノテータはクロスバリデーションアノテーションプロセスを通じてアクティビティラベルを提供し、アノテーションの品質を向上させる。
最終的に9種類の活動を得る。
私たちの知る限りでは、DOO-REは信頼できるアノテーションを備えた実際の会議室で、シングルアクティビティとグループアクティビティの両方の認識をサポートする最初のデータセットです。
関連論文リスト
- DailyDVS-200: A Comprehensive Benchmark Dataset for Event-Based Action Recognition [51.96660522869841]
DailyDVS-200は、イベントベースのアクション認識コミュニティに適したベンチマークデータセットである。
実世界のシナリオで200のアクションカテゴリをカバーし、47人の参加者によって記録され、22,000以上のイベントシーケンスで構成されている。
DailyDVS-200には14の属性がアノテートされており、記録されたアクションの詳細なキャラクタリゼーションが保証されている。
論文 参考訳(メタデータ) (2024-07-06T15:25:10Z) - FedOpenHAR: Federated Multi-Task Transfer Learning for Sensor-Based
Human Activity Recognition [0.0]
本稿では,センサを用いた人間行動認識とデバイス位置識別の両課題に対して,フェデレート・トランスファー・ラーニングをマルチタスク方式で検討する。
OpenHARフレームワークは10個の小さなデータセットを含むモデルをトレーニングするために使用される。
タスク固有でパーソナライズされたフェデレーションモデルを用いたトランスファーラーニングとトレーニングにより、各クライアントを個別に訓練し、完全集中型アプローチよりも高い精度で学習した。
論文 参考訳(メタデータ) (2023-11-13T21:31:07Z) - BehaVR: User Identification Based on VR Sensor Data [7.114684260471529]
これは、VRデバイス上で実行される複数のアプリによって収集されたすべてのセンサグループからのデータを収集し、分析するフレームワークである。
私たちはBehaVRを使って、20の人気のある現実世界のアプリと対話する実際のユーザーからデータを収集しています。
私たちは、利用可能なセンサデータから機能を抽出して、アプリ内およびアプリ間のユーザ識別のための機械学習モデルを構築します。
論文 参考訳(メタデータ) (2023-08-14T17:43:42Z) - MyDigitalFootprint: an extensive context dataset for pervasive computing
applications at the edge [7.310043452300736]
MyDigitalFootprintは、スマートフォンセンサーデータ、物理的な近接情報、オンラインソーシャルネットワークのインタラクションを含む大規模なデータセットである。
自然環境における31人のボランティアユーザーによる2ヶ月の計測で、制限なしの行動を可能にする。
データセットの有効性を示すために,各種機械学習タスクを利用したコンテキスト認識3つのアプリケーションを提案する。
論文 参考訳(メタデータ) (2023-06-28T07:59:47Z) - infoVerse: A Universal Framework for Dataset Characterization with
Multidimensional Meta-information [68.76707843019886]
infoVerseは、データセットの特徴付けのための普遍的なフレームワークである。
infoVerseは、様々なモデル駆動メタ情報を統合することで、データセットの多次元特性をキャプチャする。
実世界の3つのアプリケーション(データプルーニング、アクティブラーニング、データアノテーション)において、infoVerse空間で選択されたサンプルは、強いベースラインを一貫して上回る。
論文 参考訳(メタデータ) (2023-05-30T18:12:48Z) - Multimodal Dataset from Harsh Sub-Terranean Environment with Aerosol
Particles for Frontier Exploration [55.41644538483948]
本稿では, エアロゾル粒子を用いた過酷で非構造的な地下環境からのマルチモーダルデータセットを提案する。
ロボットオペレーティング・システム(ROS)フォーマットのすべてのオンボードセンサーから、同期された生データ計測を含んでいる。
本研究の焦点は、時間的・空間的なデータの多様性を捉えることだけでなく、取得したデータに厳しい条件が及ぼす影響を示すことである。
論文 参考訳(メタデータ) (2023-04-27T20:21:18Z) - WEARDA: Recording Wearable Sensor Data for Human Activity Monitoring [3.5297361401370044]
We present WEARDA, the open Source WEARable Sensor Data Acquisition software package。
WEARDAは、スマートウォッチによる人間の活動データ取得を容易にする。
4つのセンサーからの生データを同時に記録する機能を提供する。
論文 参考訳(メタデータ) (2023-02-28T20:07:46Z) - Navya3DSeg -- Navya 3D Semantic Segmentation Dataset & split generation
for autonomous vehicles [63.20765930558542]
3Dセマンティックデータは、障害物検出やエゴ-車両の局所化といった中核的な認識タスクに有用である。
そこで我々は,大規模生産段階の運用領域に対応する多様なラベル空間を持つ新しいデータセットであるNavala 3D(Navya3DSeg)を提案する。
ラベルのない23のラベル付きシーケンスと25の補足シーケンスが含まれており、ポイントクラウド上の自己教師付きおよび半教師付きセマンティックセマンティックセグメンテーションベンチマークを探索するために設計された。
論文 参考訳(メタデータ) (2023-02-16T13:41:19Z) - Argoverse 2: Next Generation Datasets for Self-Driving Perception and
Forecasting [64.7364925689825]
Argoverse 2(AV2)は、自動運転分野の研究の知覚と予測のための3つのデータセットの集合である。
Lidarデータセットには、ラベルなしのLidar点雲とマップ整列ポーズの2万のシーケンスが含まれている。
Motion Forecastingデータセットには、各ローカルシーンにおける自動運転車と他のアクター間の興味深い、挑戦的なインタラクションのために採掘された25万のシナリオが含まれている。
論文 参考訳(メタデータ) (2023-01-02T00:36:22Z) - A Wireless-Vision Dataset for Privacy Preserving Human Activity
Recognition [53.41825941088989]
アクティビティ認識の堅牢性を改善するため,WiNN(WiFi-based and video-based neural network)が提案されている。
以上の結果から,WiViデータセットは一次需要を満足し,パイプライン内の3つのブランチはすべて,80%以上のアクティビティ認識精度を維持していることがわかった。
論文 参考訳(メタデータ) (2022-05-24T10:49:11Z) - Occupancy Detection in Room Using Sensor Data [0.0]
本稿では,複数の変数を用いてセンサデータを用いて占有率を検出するソリューションを提案する。
Decision Tree, Random Forest, Gradient Boosting Machine, Logistic Regression, Naive Bayes, Kernelized SVM, K-Nearest Neighborsの7つの有名なアルゴリズムがテストされ、比較されている。
論文 参考訳(メタデータ) (2021-01-10T19:53:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。