Chemically Motivated Simulation Problems are Efficiently Solvable by a Quantum Computer
- URL: http://arxiv.org/abs/2401.09268v3
- Date: Wed, 27 Mar 2024 20:15:31 GMT
- Title: Chemically Motivated Simulation Problems are Efficiently Solvable by a Quantum Computer
- Authors: Philipp Schleich, Lasse Bjørn Kristensen, Jorge A. Campos Gonzalez Angulo, Davide Avagliano, Mohsen Bagherimehrab, Abdulrahman Aldossary, Christoph Gorgulla, Joe Fitzsimons, Alán Aspuru-Guzik,
- Abstract summary: We propose an inherently efficient approach for solving chemical simulation problems.
Our approach finds good initial states by assembling initial states for dynamical simulation in a scattering tree.
We discuss a variety of quantities of chemical interest that can be measured based on quantum simulation.
- Score: 0.8084821240164534
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Simulating chemical systems is highly sought after and computationally challenging, as the simulation cost exponentially increases with the system size. Quantum computers have been proposed as a computational means to overcome this bottleneck. Most efforts recently have been spent on determining the ground states of chemical systems. Hardness results and the lack of efficient heuristics for initial-state generation sheds doubt on the feasibility. Here we propose an inherently efficient approach for solving chemical simulation problems, meaning it requires quantum circuits of size scaling polynomially in relevant system parameters. If a set of assumptions can be satisfied, our approach finds good initial states by assembling initial states for dynamical simulation in a scattering tree. We discuss a variety of quantities of chemical interest that can be measured based on quantum simulation, e.g. of a reaction, succeeding the initial state preparation.
Related papers
- Quantum Embedding of Non-local Quantum Many-body Interactions in Prototypal Anti-tumor Vaccine Metalloprotein on Near Term Quantum Computing Hardware [4.8962578963959675]
We present for the first time a quantum computer model simulation of a complex hemocyanin molecule.
Hemocyanin is an important respiratory protein involved in various physiological processes.
We conclude that the magnetic structure of hemocyanin is largely influenced by the many-body correction.
arXiv Detail & Related papers (2024-10-16T16:49:42Z) - Pushing the Limits of Quantum Computing for Simulating PFAS Chemistry [0.3655818759482589]
Solving the electronic Schrodinger equation is the core problem of computational chemistry.
We propose an end-to-end quantum chemistry pipeline based on the variational quantum eigensolver (VQE) algorithm.
Our platform orchestrates hundreds of simulation jobs on compute resources to efficiently complete ab initio chemistry experiments.
arXiv Detail & Related papers (2023-11-02T13:58:02Z) - Quantum Thermal State Preparation [39.91303506884272]
We introduce simple continuous-time quantum Gibbs samplers for simulating quantum master equations.
We construct the first provably accurate and efficient algorithm for preparing certain purified Gibbs states.
Our algorithms' costs have a provable dependence on temperature, accuracy, and the mixing time.
arXiv Detail & Related papers (2023-03-31T17:29:56Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Ab initio Quantum Simulation of Strongly Correlated Materials with
Quantum Embedding [0.5872014229110214]
ab initio simulation of solid-state materials on quantum computers is still in its early stage.
We introduce an orbital-based multi-fragment approach on top of the periodic density matrix embedding theory.
Our results suggest that quantum embedding combined with a chemically intuitive fragmentation can greatly advance quantum simulation of realistic materials.
arXiv Detail & Related papers (2022-09-07T15:02:01Z) - Large-Scale Simulation of Quantum Computational Chemistry on a New
Sunway Supercomputer [9.555008476944316]
Quantum computational chemistry (QCC) is the use of quantum computers to solve problems in computational quantum chemistry.
We develop a high performance variational quantum eigensolver (VQE) simulator for simulating quantum computational chemistry problems on a new Sunway supercomputer.
arXiv Detail & Related papers (2022-07-08T07:02:14Z) - Recompilation-enhanced simulation of electron-phonon dynamics on IBM
Quantum computers [62.997667081978825]
We consider the absolute resource cost for gate-based quantum simulation of small electron-phonon systems.
We perform experiments on IBM quantum hardware for both weak and strong electron-phonon coupling.
Despite significant device noise, through the use of approximate circuit recompilation we obtain electron-phonon dynamics on current quantum computers comparable to exact diagonalisation.
arXiv Detail & Related papers (2022-02-16T19:00:00Z) - An Algebraic Quantum Circuit Compression Algorithm for Hamiltonian
Simulation [55.41644538483948]
Current generation noisy intermediate-scale quantum (NISQ) computers are severely limited in chip size and error rates.
We derive localized circuit transformations to efficiently compress quantum circuits for simulation of certain spin Hamiltonians known as free fermions.
The proposed numerical circuit compression algorithm behaves backward stable and scales cubically in the number of spins enabling circuit synthesis beyond $mathcalO(103)$ spins.
arXiv Detail & Related papers (2021-08-06T19:38:03Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Optimizing Electronic Structure Simulations on a Trapped-ion Quantum
Computer using Problem Decomposition [41.760443413408915]
We experimentally demonstrate an end-to-end pipeline that focuses on minimizing quantum resources while maintaining accuracy.
Using density matrix embedding theory as a problem decomposition technique, and an ion-trap quantum computer, we simulate a ring of 10 hydrogen atoms without freezing any electrons.
Our experimental results are an early demonstration of the potential for problem decomposition to accurately simulate large molecules on quantum hardware.
arXiv Detail & Related papers (2021-02-14T01:47:52Z) - Stochastic Quantum Circuit Simulation Using Decision Diagrams [3.9006434061597877]
A substantial amount of quantum algorithms research still relies on simulating quantum circuits on classical hardware.
We propose to use decision diagrams, as well as concurrent executions, to substantially reduce resource-requirements.
Backed up by rigorous theory, empirical studies show that this approach allows for a substantially faster and much more scalable simulation for certain quantum circuits.
arXiv Detail & Related papers (2020-12-10T12:10:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.