論文の概要: GaussianBody: Clothed Human Reconstruction via 3d Gaussian Splatting
- arxiv url: http://arxiv.org/abs/2401.09720v1
- Date: Thu, 18 Jan 2024 04:48:13 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-19 17:59:32.199801
- Title: GaussianBody: Clothed Human Reconstruction via 3d Gaussian Splatting
- Title(参考訳): Gaussian Body: 3d Gaussian Splattingによる衣服の復元
- Authors: Mengtian Li, Shengxiang Yao, Zhifeng Xie, Keyu Chen, Yu-Gang Jiang
- Abstract要約: 本稿では,3次元ガウシアンスプラッティングをベースとした,ガウシアンボディと呼ばれる新しい布地復元手法を提案する。
静的な3次元ガウススメッティングモデルを動的復元問題に適用することは、複雑な非剛性変形とリッチな布の細部のために非自明である。
本手法は,ダイナミックな衣料人体に高精細な画質で,最先端のフォトリアリスティックなノベルビューレンダリングを実現できることを示す。
- 参考スコア(独自算出の注目度): 58.67181672412564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose a novel clothed human reconstruction method called
GaussianBody, based on 3D Gaussian Splatting. Compared with the costly neural
radiance based models, 3D Gaussian Splatting has recently demonstrated great
performance in terms of training time and rendering quality. However, applying
the static 3D Gaussian Splatting model to the dynamic human reconstruction
problem is non-trivial due to complicated non-rigid deformations and rich cloth
details. To address these challenges, our method considers explicit pose-guided
deformation to associate dynamic Gaussians across the canonical space and the
observation space, introducing a physically-based prior with regularized
transformations helps mitigate ambiguity between the two spaces. During the
training process, we further propose a pose refinement strategy to update the
pose regression for compensating the inaccurate initial estimation and a
split-with-scale mechanism to enhance the density of regressed point clouds.
The experiments validate that our method can achieve state-of-the-art
photorealistic novel-view rendering results with high-quality details for
dynamic clothed human bodies, along with explicit geometry reconstruction.
- Abstract(参考訳): そこで本研究では,3次元ガウシアンスプレイティングをベースとした,ガウシアンボディと呼ばれる新しい布地復元手法を提案する。
3D Gaussian Splattingは、高価なニューラルラディアンスベースモデルと比較して、トレーニング時間とレンダリング品質の点で、最近優れたパフォーマンスを示している。
しかし, 動的復元問題に対する静的な3次元ガウススティングモデルの適用は, 複雑な非剛性変形とリッチな布の細部により容易ではない。
これらの課題に対処するため,本手法では,標準空間と観測空間をまたいで動的ガウスを関連付けるために,明示的なポーズ誘導変形を考える。
訓練中,不正確な初期推定を補償するためのポーズ回帰を更新するポーズ改善戦略と,回帰点雲の密度を高めるためのスプリット・ア・スケール機構を提案する。
提案手法は, ダイナミックな布を被る人体に対して, 鮮明な幾何学的再構成とともに, 高品質な細部を施した, 最先端のフォトリアリスティックなノベルビューレンダリングを実現できることを示す。
関連論文リスト
- DeSiRe-GS: 4D Street Gaussians for Static-Dynamic Decomposition and Surface Reconstruction for Urban Driving Scenes [71.61083731844282]
本稿では,自己教師型ガウススプラッティング表現であるDeSiRe-GSについて述べる。
複雑な駆動シナリオにおいて、効率的な静的・動的分解と高忠実な表面再構成を可能にする。
論文 参考訳(メタデータ) (2024-11-18T05:49:16Z) - USP-Gaussian: Unifying Spike-based Image Reconstruction, Pose Correction and Gaussian Splatting [45.246178004823534]
スパイクカメラは、0-1ビットストリームを40kHzで撮影する革新的なニューロモルフィックカメラとして、ますます3D再構成タスクに採用されている。
以前のスパイクベースの3D再構成アプローチでは、ケースケースのパイプラインを使うことが多い。
本稿では,スパイクに基づく画像再構成,ポーズ補正,ガウス的スプラッティングをエンドツーエンドのフレームワークに統一する,相乗的最適化フレームワーク textbfUSP-Gaussian を提案する。
論文 参考訳(メタデータ) (2024-11-15T14:15:16Z) - HFGaussian: Learning Generalizable Gaussian Human with Integrated Human Features [23.321087432786605]
HFGaussianと呼ばれる新しいアプローチでは、25FPSでスパルス入力画像から3Dスケルトン、3Dキーポイント、高密度ポーズなどの新しいビューや人間の特徴をリアルタイムで推定できる。
我々は,HFGaussの手法をヒトガウススプラッティングにおける最新の最先端技術に対して徹底的に評価し,そのリアルタイム,最先端性能を示す。
論文 参考訳(メタデータ) (2024-11-05T13:31:04Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplatは、多視点画像から3Dガウスアンによってパラメータ化された3Dシーンを再構成できるフィードフォワードモデルである。
提案手法は,推定時にリアルタイムな3次元ガウス再構成を実現する。
この研究は、ポーズフリーの一般化可能な3次元再構成において大きな進歩をもたらし、実世界のシナリオに適用可能であることを示す。
論文 参考訳(メタデータ) (2024-10-31T17:58:22Z) - PF3plat: Pose-Free Feed-Forward 3D Gaussian Splatting [54.7468067660037]
PF3platは、設計選択を検証した包括的なアブレーション研究によってサポートされた、すべてのベンチマークに新しい最先端を設定します。
本フレームワークは,3DGSの高速,スケーラビリティ,高品質な3D再構成とビュー合成機能を活用している。
論文 参考訳(メタデータ) (2024-10-29T15:28:15Z) - Generalizable Human Gaussians for Sparse View Synthesis [48.47812125126829]
そこで本研究では,光写実的かつ正確な視線レンダリングを可能にする,一般化可能なヒトガウシアンを学習するための新しい手法を提案する。
このアプローチの重要な革新は、3次元ガウスパラメータの学習を、人間のテンプレートの2次元UV空間上で定義された回帰プロセスに再構成することである。
提案手法は,データ内一般化とクロスデータセット一般化設定の両方において,最近の手法よりも優れている。
論文 参考訳(メタデータ) (2024-07-17T17:56:30Z) - Gaussian Opacity Fields: Efficient Adaptive Surface Reconstruction in Unbounded Scenes [50.92217884840301]
Gaussian Opacity Fields (GOF)は、シーンにおける効率的で高品質で適応的な表面再構成のための新しいアプローチである。
GOFは3Dガウスのレイトレーシングに基づくボリュームレンダリングに由来する。
GOFは、表面再構成と新しいビュー合成において、既存の3DGSベースの手法を超越している。
論文 参考訳(メタデータ) (2024-04-16T17:57:19Z) - Mesh-based Gaussian Splatting for Real-time Large-scale Deformation [58.18290393082119]
ユーザがリアルタイムで大きな変形で暗黙の表現を直接変形または操作することは困難である。
我々は,インタラクティブな変形を可能にする新しいGSベースの手法を開発した。
提案手法は,高いフレームレートで良好なレンダリング結果を維持しつつ,高品質な再構成と効率的な変形を実現する。
論文 参考訳(メタデータ) (2024-02-07T12:36:54Z) - Neural Parametric Gaussians for Monocular Non-Rigid Object Reconstruction [8.260048622127913]
モノクロビデオから動的オブジェクトを再構築することは、過小評価され難解な問題である。
本稿では,2段階のアプローチを取り入れたニューラルパラメトリックガウス(NPG)を提案する。
NPGは、特にマルチビューの手がかりがほとんどない挑戦的なシナリオにおいて、以前の研究よりも優れた結果が得られる。
論文 参考訳(メタデータ) (2023-12-02T18:06:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。