Interaction quench of dipolar bosons in a one-dimensional optical lattice
- URL: http://arxiv.org/abs/2401.10317v2
- Date: Tue, 11 Mar 2025 10:46:32 GMT
- Title: Interaction quench of dipolar bosons in a one-dimensional optical lattice
- Authors: Paolo Molignini, Barnali Chakrabarti,
- Abstract summary: A Tonks-Girardeau (TG) gas is a highly correlated quantum state of strongly interacting bosons confined to one dimension.<n>We simulate an interaction quench on dipolar bosons initially prepared in various states and fillings.<n>Our results reveal that stability is maintained only at very weak dipolar interaction strengths when starting from a unit-filled TG Mott state.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A Tonks-Girardeau (TG) gas is a highly correlated quantum state of strongly interacting bosons confined to one dimension, where repulsive interactions make the particles behave like impenetrable fermions. By suddenly tuning these interactions to the attractive regime, it is possible to realize a super-Tonks-Girardeau (sTG) gas -- a highly excited, metastable state of strongly attractive bosons with unique stability properties. Inspired by the sTG quench scenario, we investigate a similar setup but with the inclusion of long-range dipolar interactions, which modify the system away from the TG Mott insulating limit. We simulate an interaction quench on dipolar bosons initially prepared in various states and fillings, using real-space densities, orbital occupations, Glauber correlation functions, and autocorrelation functions to probe post-quench stability. Our results reveal that stability is maintained only at very weak dipolar interaction strengths when starting from a unit-filled TG Mott state. In contrast, all cluster states -- whether unit-filled or doubly-filled -- eventually collapse under attractive interactions. This collapse is not always visible in the density profile but becomes apparent in the autocorrelation function, indicating complex many-body restructuring of the quantum state. Our findings underscore the potential of dipolar interactions to drive novel quantum dynamics and highlight the delicate balance required to stabilize excited states in long-range interacting systems.
Related papers
- Equilibrium and nonequilibrium steady states with the repeated interaction protocol: Relaxation dynamics and energetic cost [44.99833362998488]
We study the dynamics of a qubit system interacting with thermalized bath-ancilla spins via a repeated interaction scheme.
Our key finding is that deterministic system-ancilla interactions do not typically result in the system thermalizing to the thermal state of the ancilla.
arXiv Detail & Related papers (2025-01-09T17:35:36Z) - Unbounded entropy production and violent fragmentation in long-range interacting super-Tonks-Girardeau systems [0.0]
We study the non-equilibrium dynamics of a one-dimensional Bose gas with long-range interactions that decay as $(frac1ralpha)$ $(0.5 alpha 4.0$)
We find that relaxation is achieved through a complex intermediate dynamics demonstrated by violent fragmentation and chaotic delocalization.
Our study showcases the complex relaxation behavior of tunable long-range interacting systems that could be engineered in state-of-the-art experiments.
arXiv Detail & Related papers (2024-05-23T18:00:00Z) - Scalable spin squeezing from critical slowing down in short-range interacting systems [0.0]
We show that scalable squeezing can be produced in 2d U(1)-symmetric systems even by short-range interactions.
Our results open the path to realizing massive entangled states of potential metrological interest in many relevant platforms of quantum simulation and information processing.
arXiv Detail & Related papers (2024-04-18T21:29:43Z) - Directional superradiance in a driven ultracold atomic gas in free-space [0.0]
We study a dense ensemble illuminated by a strong coherent drive while interacting via dipole-dipole interactions.
Although the steady-state features some similarities to the reported superradiant to normal non-induced transition, we observe significant qualitative and quantitative differences.
We develop a simple theoretical model that explains the scaling properties by accounting for interaction-equilibrium inhomogeneous effects and spontaneous emission.
arXiv Detail & Related papers (2024-03-22T18:14:44Z) - Stability of quasicrystalline ultracold fermions to dipolar interactions [0.0]
We study repulsive ultracold dipolar fermions in a quasiperiodic optical lattice to characterize the behavior of interacting quasicrystals.
Our work shows that dipolar interactions in a quasiperiodic potential can give rise to a complex, tuneable coexistence of localized and extended quantum states.
arXiv Detail & Related papers (2024-03-07T19:00:01Z) - Dipolar quantum solids emerging in a Hubbard quantum simulator [45.82143101967126]
Long-range and anisotropic interactions promote rich spatial structure in quantum mechanical many-body systems.
We show that novel strongly correlated quantum phases can be realized using long-range dipolar interaction in optical lattices.
This work opens the door to quantum simulations of a wide range of lattice models with long-range and anisotropic interactions.
arXiv Detail & Related papers (2023-06-01T16:49:20Z) - Entanglement and localization in long-range quadratic Lindbladians [49.1574468325115]
Signatures of localization have been observed in condensed matter and cold atomic systems.
We propose a model of one-dimensional chain of non-interacting, spinless fermions coupled to a local ensemble of baths.
We show that the steady state of the system undergoes a localization entanglement phase transition by tuning $p$ which remains stable in the presence of coherent hopping.
arXiv Detail & Related papers (2023-03-13T12:45:25Z) - Quasi-Floquet prethermalization in a disordered dipolar spin ensemble in
diamond [2.8196336649430482]
Floquet (periodic) driving has emerged as a powerful technique for engineering quantum systems.
We report the observation of Floquet prethermalization in a strongly interacting dipolar spin ensemble in diamond.
In contrast to a single-frequency drive, we find that the existence of prethermalization is extremely sensitive to the smoothness of the applied field.
arXiv Detail & Related papers (2022-12-21T19:00:00Z) - Rapidity and momentum distributions of 1D dipolar quantum gases [4.308470505441047]
We show that rapidity and momentum distributions are nearly unaffected by the dipolar interactions.
We also observe that significant changes of these distributions occur when decreasing the strength of the contact interactions.
arXiv Detail & Related papers (2022-11-16T18:59:07Z) - Formation of robust bound states of interacting microwave photons [148.37607455646454]
One of the hallmarks of interacting systems is the formation of multi-particle bound states.
We develop a high fidelity parameterizable fSim gate that implements the periodic quantum circuit of the spin-1/2 XXZ model.
By placing microwave photons in adjacent qubit sites, we study the propagation of these excitations and observe their bound nature for up to 5 photons.
arXiv Detail & Related papers (2022-06-10T17:52:29Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Accessing the topological Mott insulator in cold atom quantum simulators
with realistic Rydberg dressing [58.720142291102135]
We investigate a realistic scenario for the quantum simulation of such systems using cold Rydberg-dressed atoms in optical lattices.
We perform a detailed analysis of the phase diagram at half- and incommensurate fillings, in the mean-field approximation.
We furthermore study the stability of the phases with respect to temperature within the mean-field approximation.
arXiv Detail & Related papers (2022-03-28T14:55:28Z) - Quantum liquids and droplets with low-energy interactions in one
dimension [0.20646127669654826]
We study the role of effective three-body repulsion, in systems with weak attractive pairwise interactions.
At zero temperature, the equations of state in both theories agree quantitatively at low densities for overall repulsion.
We develop analytical tools to investigate the properties of the theory, and obtain astounding agreement with exact numerical calculations.
arXiv Detail & Related papers (2021-03-30T16:56:01Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Optically pumped spin polarization as a probe of many-body
thermalization [50.591267188664666]
We study the spin diffusion dynamics of 13C in diamond, which we dynamically polarize at room temperature via optical spin pumping of engineered color centers.
We find good thermal contact throughout the nuclear spin bath, virtually independent of the hyperfine coupling strength.
Our results open intriguing opportunities to study the onset of thermalization in a system by controlling the internal interactions within the bath.
arXiv Detail & Related papers (2020-05-01T23:16:33Z) - How creating one additional well can generate Bose-Einstein condensation [0.0]
realization of Bose-Einstein condensation in ultracold trapped gases has led to a revival of interest in that fascinating quantum phenomenon.
We propose a system of strongly interacting bosons which overcomes those obstacles by exhibiting a number of intriguing related features.
arXiv Detail & Related papers (2020-02-23T22:08:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.