Entanglement Entropy in Scalar Quantum Electrodynamics
- URL: http://arxiv.org/abs/2401.10332v3
- Date: Tue, 26 Mar 2024 09:11:31 GMT
- Title: Entanglement Entropy in Scalar Quantum Electrodynamics
- Authors: Samuel Fedida, Anupam Mazumdar, Sougato Bose, Alessio Serafini,
- Abstract summary: We find the entanglement entropy of a subregion of the vacuum state in scalar quantum electrodynamics.
We derive the Maxwell-Proca propagator in conical Euclidean space.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We find the entanglement entropy of a subregion of the vacuum state in scalar quantum electrodynamics, working perturbatively to the 2-loops level. Doing so leads us to derive the Maxwell-Proca propagator in conical Euclidean space. The area law of entanglement entropy is recovered in both the massive and massless limits of the theory, as is expected. These results yield the renormalisation group flow of entanglement entropy, and we find that loop contributions suppress entanglement entropy. We highlight these results in the light of the renormalization group flow of couplings and correlators, which are increased in scalar quantum electrodynamics, so that the potential tension between the increase in correlations between two points of spacetime and the decrease in entanglement entropy between two regions of spacetime with energy is discussed. We indeed show that the vacuum of a subregion of spacetime purifies with energy in scalar quantum electrodynamics, which is related to the concept of screening.
Related papers
- Energetics of the dissipative quantum oscillator [22.76327908349951]
We discuss some aspects of the energetics of a quantum Brownian particle placed in a harmonic trap.
Based on the fluctuation-dissipation theorem, we analyze two distinct notions of thermally-averaged energy.
We generalize our analysis to the case of the three-dimensional dissipative magneto-oscillator.
arXiv Detail & Related papers (2023-10-05T15:18:56Z) - Thermodynamic entropy production in the dynamical Casimir effect [0.0]
We study a quantum field confined within a one-dimensional ideal cavity.
The central question is how the thermodynamic entropy of the field evolves over time.
arXiv Detail & Related papers (2023-09-14T16:41:28Z) - Thermodynamics of adiabatic quantum pumping in quantum dots [50.24983453990065]
We consider adiabatic quantum pumping through a resonant level model, a single-level quantum dot connected to two fermionic leads.
We develop a self-contained thermodynamic description of this model accounting for the variation of the energy level of the dot and the tunnelling rates with the thermal baths.
arXiv Detail & Related papers (2023-06-14T16:29:18Z) - Measurement phase transitions in the no-click limit as quantum phase
transitions of a non-hermitean vacuum [77.34726150561087]
We study phase transitions occurring in the stationary state of the dynamics of integrable many-body non-Hermitian Hamiltonians.
We observe that the entanglement phase transitions occurring in the stationary state have the same nature as that occurring in the vacuum of the non-hermitian Hamiltonian.
arXiv Detail & Related papers (2023-01-18T09:26:02Z) - Quantum thermodynamics of periodically driven polaritonic systems [0.0]
We investigate the energy distribution and quantum thermodynamics in periodically driven polaritonic systems at room temperature.
We compute the thermodynamic performance during harmonic modulation and demonstrate that maximum efficiency occurs at resonance.
arXiv Detail & Related papers (2022-07-03T04:32:11Z) - Open-system approach to nonequilibrium quantum thermodynamics at
arbitrary coupling [77.34726150561087]
We develop a general theory describing the thermodynamical behavior of open quantum systems coupled to thermal baths.
Our approach is based on the exact time-local quantum master equation for the reduced open system states.
arXiv Detail & Related papers (2021-09-24T11:19:22Z) - Quantum Entropy Evolution [0.12183405753834559]
A quantum coordinate-entropy formulated in quantum phase space has been recently proposed together with an entropy law.
We show that the entropy associated with coherent states evolving under a Dirac Hamiltonian is increasing.
We then analyze the impact of the entropy law for the evolution scenarios described above and explore the possibility that entropy oscillations trigger the annihilation and the creation of particles.
arXiv Detail & Related papers (2021-06-29T13:07:09Z) - Long-distance entanglement of purification and reflected entropy in
conformal field theory [58.84597116744021]
We study entanglement properties of mixed states in quantum field theory via entanglement of purification and reflected entropy.
We find an elementary proof that the decay of both, the entanglement of purification and reflected entropy, is enhanced with respect to the mutual information behaviour.
arXiv Detail & Related papers (2021-01-29T19:00:03Z) - Analog cosmological reheating in an ultracold Bose gas [58.720142291102135]
We quantum-simulate the reheating-like dynamics of a generic cosmological single-field model in an ultracold Bose gas.
Expanding spacetime as well as the background oscillating inflaton field are mimicked in the non-relativistic limit.
The proposed experiment has the potential of exploring the evolution up to late times even beyond the weak coupling regime.
arXiv Detail & Related papers (2020-08-05T18:00:26Z) - Entanglement dynamics in dissipative photonic Mott insulators [62.997667081978825]
In spite of particle losses the quantum entanglement propagation exhibits a ballistic character with propagation speeds related to the differerent quasiparticles that are involved in the dynamics.
Our analysis reveals that photon dissipation has a strikingly asymmetric behavior in the two configurations with a much more dramatic role on the holon entanglement propagation than for the doublon case.
arXiv Detail & Related papers (2020-04-27T15:48:24Z) - Heat flow and noncommutative quantum mechanics in phase-space [0.0]
We show that by controlling the new constants introduced in the quantum theory, due to a deformed Heisenberg-Weyl algebra, the heat flow from the hot to the cold system may be enhanced.
We also give a brief discussion on the robustness of the second law of thermodynamics in the context of noncommutative quantum mechanics.
arXiv Detail & Related papers (2019-12-26T15:28:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.