Quantum Architecture Search with Unsupervised Representation Learning
- URL: http://arxiv.org/abs/2401.11576v2
- Date: Tue, 19 Mar 2024 12:53:24 GMT
- Title: Quantum Architecture Search with Unsupervised Representation Learning
- Authors: Yize Sun, Zixin Wu, Yunpu Ma, Volker Tresp,
- Abstract summary: We propose a framework for unsupervised representation learning for quantum architecture search (QAS)
Our framework is predictor-free eliminating the need for a large number of labeled quantum circuits.
The results show our framework can more efficiently get well-performing candidate circuits within a limited number of searches.
- Score: 24.698519892763283
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Utilizing unsupervised representation learning for quantum architecture search (QAS) represents a cutting-edge approach poised to realize potential quantum advantage on Noisy Intermediate-Scale Quantum (NISQ) devices. Most QAS algorithms combine their search space and search algorithms together and thus generally require evaluating a large number of quantum circuits during the search process. Predictor-based QAS algorithms can alleviate this problem by directly estimating the performance of circuits according to their structures. However, a high-performance predictor generally requires very time-consuming labeling to obtain a large number of labeled quantum circuits. Recently, a classical neural architecture search algorithm Arch2vec inspires us by showing that architecture search can benefit from decoupling unsupervised representation learning from the search process. Whether unsupervised representation learning can help QAS without any predictor is still an open topic. In this work, we propose a framework QAS with unsupervised representation learning and visualize how unsupervised architecture representation learning encourages quantum circuit architectures with similar connections and operators to cluster together. Specifically, our framework enables the process of QAS to be decoupled from unsupervised architecture representation learning so that the learned representation can be directly applied to different downstream applications. Furthermore, our framework is predictor-free eliminating the need for a large number of labeled quantum circuits. During the search process, we use two algorithms REINFORCE and Bayesian Optimization to directly search on the latent representation, and compare them with the method Random Search. The results show our framework can more efficiently get well-performing candidate circuits within a limited number of searches.
Related papers
- RhoDARTS: Differentiable Quantum Architecture Search with Density Matrix Simulations [48.670876200492415]
Variational Quantum Algorithms (VQAs) are a promising approach for leveraging powerful Noisy Intermediate-Scale Quantum (NISQ) computers.<n>We propose $rho$DARTS, a differentiable Quantum Architecture Search (QAS) algorithm that models the search process as the evolution of a quantum mixed state.
arXiv Detail & Related papers (2025-06-04T08:30:35Z) - Provably Robust Training of Quantum Circuit Classifiers Against Parameter Noise [49.97673761305336]
Noise remains a major obstacle to achieving reliable quantum algorithms.<n>We present a provably noise-resilient training theory and algorithm to enhance the robustness of parameterized quantum circuit classifiers.
arXiv Detail & Related papers (2025-05-24T02:51:34Z) - An Efficient Quantum Classifier Based on Hamiltonian Representations [50.467930253994155]
Quantum machine learning (QML) is a discipline that seeks to transfer the advantages of quantum computing to data-driven tasks.
We propose an efficient approach that circumvents the costs associated with data encoding by mapping inputs to a finite set of Pauli strings.
We evaluate our approach on text and image classification tasks, against well-established classical and quantum models.
arXiv Detail & Related papers (2025-04-13T11:49:53Z) - Topology-Driven Quantum Architecture Search Framework [2.9862856321580895]
We propose a Topology-Driven Quantum Architecture Search (TD-QAS) framework to identify high-performance quantum circuits.
By decoupling the extensive search space into topology and gate-type components, TD-QAS avoids exploring gate configurations within low-performance topologies.
arXiv Detail & Related papers (2025-02-20T05:05:53Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
Variational quantum algorithms (VQA) have emerged as a promising quantum alternative for solving optimization and machine learning problems.
In this paper, we experimentally demonstrate the influence of the circuit design on the performance obtained for two classification problems.
We also study the degradation of the obtained circuits in the presence of noise when simulating real quantum computers.
arXiv Detail & Related papers (2024-04-17T11:00:12Z) - Qubit-Wise Architecture Search Method for Variational Quantum Circuits [11.790545710021593]
We propose a novel qubit-wise architec-ture search (QWAS) method, which progres-sively search one-qubit configuration per stage.
Our proposed method can balance the exploration and exploitation of cir-cuit performance and size in some real-world tasks, such as MNIST, Fashion and MOSI.
arXiv Detail & Related papers (2024-03-07T07:08:57Z) - Quantum Subroutine for Variance Estimation: Algorithmic Design and Applications [80.04533958880862]
Quantum computing sets the foundation for new ways of designing algorithms.
New challenges arise concerning which field quantum speedup can be achieved.
Looking for the design of quantum subroutines that are more efficient than their classical counterpart poses solid pillars to new powerful quantum algorithms.
arXiv Detail & Related papers (2024-02-26T09:32:07Z) - Reinforcement learning-assisted quantum architecture search for variational quantum algorithms [0.0]
This thesis focuses on identifying functional quantum circuits in noisy quantum hardware.
We introduce a tensor-based quantum circuit encoding, restrictions on environment dynamics to explore the search space of possible circuits efficiently.
In dealing with various VQAs, our RL-based QAS outperforms existing QAS.
arXiv Detail & Related papers (2024-02-21T12:30:39Z) - Curriculum reinforcement learning for quantum architecture search under
hardware errors [1.583327010995414]
This work introduces a curriculum-based reinforcement learning QAS (CRLQAS) designed to tackle challenges in VQA deployment.
The algorithm incorporates (i) a 3D architecture encoding and restrictions on environment dynamics to explore the search space of possible circuits efficiently.
To facilitate studies, we developed an optimized simulator for our algorithm, significantly improving computational efficiency in noisy quantum circuits.
arXiv Detail & Related papers (2024-02-05T20:33:00Z) - QArchSearch: A Scalable Quantum Architecture Search Package [1.725192300740999]
We present textttQArchSearch, an AI based quantum architecture search package with the textttQTensor library as a backend.
We show that the search package is able to efficiently scale the search to large quantum circuits and enables the exploration of more complex models for different quantum applications.
arXiv Detail & Related papers (2023-10-11T20:00:33Z) - QNEAT: Natural Evolution of Variational Quantum Circuit Architecture [95.29334926638462]
We focus on variational quantum circuits (VQC), which emerged as the most promising candidates for the quantum counterpart of neural networks.
Although showing promising results, VQCs can be hard to train because of different issues, e.g., barren plateau, periodicity of the weights, or choice of architecture.
We propose a gradient-free algorithm inspired by natural evolution to optimize both the weights and the architecture of the VQC.
arXiv Detail & Related papers (2023-04-14T08:03:20Z) - GSQAS: Graph Self-supervised Quantum Architecture Search [0.18899300124593643]
Existing Quantum Architecture Search (QAS) algorithms require to evaluate a large number of quantum circuits during the search process.
We propose GSQAS, a graph self-supervised QAS, which trains a predictor based on self-supervised learning.
GSQAS outperforms the state-of-the-art predictor-based QAS, achieving better performance with fewer labeled circuits.
arXiv Detail & Related papers (2023-03-22T08:35:28Z) - Optimizing Tensor Network Contraction Using Reinforcement Learning [86.05566365115729]
We propose a Reinforcement Learning (RL) approach combined with Graph Neural Networks (GNN) to address the contraction ordering problem.
The problem is extremely challenging due to the huge search space, the heavy-tailed reward distribution, and the challenging credit assignment.
We show how a carefully implemented RL-agent that uses a GNN as the basic policy construct can address these challenges.
arXiv Detail & Related papers (2022-04-18T21:45:13Z) - Quantum circuit architecture search for variational quantum algorithms [88.71725630554758]
We propose a resource and runtime efficient scheme termed quantum architecture search (QAS)
QAS automatically seeks a near-optimal ansatz to balance benefits and side-effects brought by adding more noisy quantum gates.
We implement QAS on both the numerical simulator and real quantum hardware, via the IBM cloud, to accomplish data classification and quantum chemistry tasks.
arXiv Detail & Related papers (2020-10-20T12:06:27Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
We show that it is possible to greatly reduce the number of qubits needed for the Traveling Salesman Problem.
We also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models.
arXiv Detail & Related papers (2020-09-15T18:17:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.