Entangled Photon Generation through Cooper Pair Recombination in a Noncentrosymmetric Quantum Well
- URL: http://arxiv.org/abs/2401.11577v2
- Date: Fri, 2 Aug 2024 16:40:41 GMT
- Title: Entangled Photon Generation through Cooper Pair Recombination in a Noncentrosymmetric Quantum Well
- Authors: Mehdi Biderang, Erfan Hosseini, Alireza Akbari,
- Abstract summary: We show that the highest achievable purity of entangled photon pairs emerges within scenarios involving pure singlet Cooper pairs.
In addition to purity concerns, to explore the distribution of two-photon states, we compare their population across entangled pairs for potential superconducting pairings.
- Score: 0.6554326244334868
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore theoretically the generation of entangled two-photon pairs by Cooper pair recombination in a noncentrosymmetric [001]-quantum well superconductor, driven by a forward-biased p-n junction with a superconducting layer which exhibits admixture Rashba and Dresselhaus spin-orbit couplings. We show that the highest achievable purity of entangled photon pairs emerges within scenarios involving pure singlet Cooper pairs, specifically, the conventional $s$-wave gap function. Our results highlight the importance of minimizing the charge-carrier level concentration and balancing the magnitudes of Rashba and Dresselhaus spin-orbit couplings to achieve entangled states with enhanced purity, which can be realized by reducing the amplitudes of antisymmetric spin-orbit couplings. In addition to purity concerns, to explore the distribution of two-photon states, we compare their population across entangled pairs for potential superconducting pairings.
Related papers
- Two-photon coupling via Josephson element II: Interaction renormalizations and cross-Kerr coupling [0.0]
We study the interactions mediated by symmetric superconducting quantum interference device (SQUID)<n>The coupling SQUID can switch between single- or two-photon interaction in situ.
arXiv Detail & Related papers (2025-07-17T17:48:28Z) - Steady-state dynamics and non-local correlations in thermoelectric Cooper pair splitters [43.62395775086322]
Recent experiments on Cooper pair splitters using superconductor-quantum dot hybrids have embarked on creating entanglement in the solid-state.<n>We present a comprehensive analysis of the fundamental components of the observed transport signal.<n>Our work provides detailed insights into the gate voltage control of the quantum correlations in superconducting-hybrid Cooper pair splitters.
arXiv Detail & Related papers (2024-06-10T06:46:10Z) - Nonlinear chiral quantum optics with giant-emitter pairs [9.045697677452061]
We propose a setup which combines giant emitters (coupling to light at multiple points separated by wavelength distances) with nonlinear quantum optics and its correlated photons.
We show that the proposed setup can provide directional quantum many-body resources, and can be configured as a building block for a chiral quantum network with correlated flying qubits''
Our findings point toward a rich landscape of tailoring multiphoton propagation and correlation properties by exploiting interference effects of giant emitters coupling to nonlinear photonic baths.
arXiv Detail & Related papers (2024-04-15T14:26:25Z) - Strong hole-photon coupling in planar Ge: probing the charge degree and
Wigner molecule states [0.0]
We present strong coupling between a hole charge qubit and microwave photons in a superconducting quantum interference device (SQUID) array resonator.
This work paves the way towards coherent quantum connections between remote hole qubits in planar Ge, required to scale up hole-based quantum processors.
arXiv Detail & Related papers (2023-10-31T17:27:46Z) - Pairing from repulsion in a two-dimensional Fermi gas with soft-core interactions [3.4186533395054566]
We investigate a model many-body system of Fermi gas in two dimensions, where the bare two-body interaction is repulsive and takes the form of a soft-core disk potential.
We obtain the zero temperature phase diagram of this model by numerical functional renormalization group (FRG)
We trace the stabilization and enhancement of $f$- and $h$-wave pairing back to the momentum dependence of the bare interaction.
arXiv Detail & Related papers (2023-09-29T16:08:45Z) - Pairing dome from an emergent Feshbach resonance in a strongly repulsive bilayer model [0.0]
A key to understanding unconventional superconductivity lies in unraveling the pairing mechanism of mobile charge carriers in doped antiferromagnets.
Here, we study pairing in a mixed-dimensional (mixD) $t-J$ model, featuring robust binding energies.
Our work provides a microscopic theory of pairing in the doped mixD system with dominant repulsion, closely related to bilayer, Ni-based superconductors.
arXiv Detail & Related papers (2023-09-22T17:59:13Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Dilute neutron star matter from neural-network quantum states [58.720142291102135]
Low-density neutron matter is characterized by the formation of Cooper pairs and the onset of superfluidity.
We model this density regime by capitalizing on the expressivity of the hidden-nucleon neural-network quantum states combined with variational Monte Carlo and reconfiguration techniques.
arXiv Detail & Related papers (2022-12-08T17:55:25Z) - Tuning long-range fermion-mediated interactions in cold-atom quantum
simulators [68.8204255655161]
Engineering long-range interactions in cold-atom quantum simulators can lead to exotic quantum many-body behavior.
Here, we propose several tuning knobs, accessible in current experimental platforms, that allow to further control the range and shape of the mediated interactions.
arXiv Detail & Related papers (2022-03-31T13:32:12Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Two-photon resonance fluorescence of two interacting non-identical
quantum emitters [77.34726150561087]
We study a system of two interacting, non-indentical quantum emitters driven by a coherent field.
We show that the features imprinted by the two-photon dynamics into the spectrum of resonance fluorescence are particularly sensitive to changes in the distance between emitters.
This can be exploited for applications such as superresolution imaging of point-like sources.
arXiv Detail & Related papers (2021-06-04T16:13:01Z) - Observation-dependent suppression and enhancement of two-photon
coincidences by tailored losses [68.8204255655161]
Hong-Ou-Mandel (HOM) effect can lead to a perfect suppression of two-particle coincidences between the output ports of a balanced beam splitter.
In this work, we demonstrate experimentally that the two-particle coincidence statistics of two bosons can instead be seamlessly tuned to substantial enhancement.
Our findings reveal a new approach to harnessing non-Hermitian settings for the manipulation of multi-particle quantum states.
arXiv Detail & Related papers (2021-05-12T06:47:35Z) - Parity-Symmetry-Protected Bundle Emission [11.798151369038557]
We demonstrate symmetry protected bundle emission in the cavity QED system under the ultrastrong coupling regime.
This work extends multi-photon bundle emission to the ultrastrong coupling regime, and offers the prospect of exploring symmetry-protected multi-quanta physics.
arXiv Detail & Related papers (2020-12-20T13:42:41Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.