論文の概要: Context Matters: Pushing the Boundaries of Open-Ended Answer Generation
with Graph-Structured Knowledge Context
- arxiv url: http://arxiv.org/abs/2401.12671v2
- Date: Tue, 5 Mar 2024 07:18:53 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-07 00:49:35.424073
- Title: Context Matters: Pushing the Boundaries of Open-Ended Answer Generation
with Graph-Structured Knowledge Context
- Title(参考訳): コンテキスト: グラフ構造化知識コンテキストによるオープンエンディングアンサー生成の境界を押し上げる
- Authors: Somnath Banerjee, Amruit Sahoo, Sayan Layek, Avik Dutta, Rima Hazra,
Animesh Mukherjee
- Abstract要約: 本稿では,知識グラフに基づく拡張と合わせて,グラフ駆動型コンテキスト検索を組み合わせた新しいフレームワークを提案する。
我々は,様々なパラメータサイズを持つ大規模言語モデル(LLM)の実験を行い,知識の基盤化能力を評価し,オープンな質問に対する回答の事実的正確性を決定する。
われわれの方法であるGraphContextGenは、テキストベースの検索システムよりも一貫して優れており、その堅牢性と多くのユースケースへの適応性を実証している。
- 参考スコア(独自算出の注目度): 4.368725325557961
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the continuously advancing AI landscape, crafting context-rich and
meaningful responses via Large Language Models (LLMs) is essential. Researchers
are becoming more aware of the challenges that LLMs with fewer parameters
encounter when trying to provide suitable answers to open-ended questions. To
address these hurdles, the integration of cutting-edge strategies, augmentation
of rich external domain knowledge to LLMs, offers significant improvements.
This paper introduces a novel framework that combines graph-driven context
retrieval in conjunction to knowledge graphs based enhancement, honing the
proficiency of LLMs, especially in domain specific community question answering
platforms like AskUbuntu, Unix, and ServerFault. We conduct experiments on
various LLMs with different parameter sizes to evaluate their ability to ground
knowledge and determine factual accuracy in answers to open-ended questions.
Our methodology GraphContextGen consistently outperforms dominant text-based
retrieval systems, demonstrating its robustness and adaptability to a larger
number of use cases. This advancement highlights the importance of pairing
context rich data retrieval with LLMs, offering a renewed approach to knowledge
sourcing and generation in AI systems. We also show that, due to rich
contextual data retrieval, the crucial entities, along with the generated
answer, remain factually coherent with the gold answer.
- Abstract(参考訳): 継続的に進行するAIの世界では、Large Language Models (LLMs)を通じてコンテキストリッチで意味のある応答を作成することが不可欠である。
研究者たちは、オープンエンドの質問に対して適切な回答を提供しようとすると、パラメータの少ないllmが遭遇する課題をより認識するようになった。
これらのハードルに対処するため、最先端戦略の統合、豊富な外部ドメイン知識のLLMへの拡張は、大幅な改善をもたらす。
本稿では,特にAskUbuntu,Unix,ServerFaultなどのドメイン固有のコミュニティ質問応答プラットフォームにおいて,知識グラフに基づく文脈検索とLLMの能力向上を併用した新しいフレームワークを提案する。
異なるパラメータサイズを持つ様々なllm実験を行い,知識を基礎づける能力を評価し,オープンエンド質問に対する回答の事実的正確さを判定する。
われわれの方法であるGraphContextGenは、テキストベースの検索システムよりも一貫して優れており、その堅牢性と多くのユースケースへの適応性を示している。
この進歩は、LLMとのペアリングコンテキストリッチなデータ検索の重要性を強調し、AIシステムにおける知識ソーシングと生成に対する新たなアプローチを提供する。
また,コンテクストデータ検索の豊富さから,生成した回答と合わせて重要なエンティティが,実際にはゴールド回答と一貫性を保っていることを示す。
関連論文リスト
- Context Awareness Gate For Retrieval Augmented Generation [2.749898166276854]
Retrieval Augmented Generation (RAG) は、大規模言語モデル(LLM)の限界を軽減し、ドメイン固有の質問に答える手段として広く採用されている。
これまでの研究は主に、取得したデータチャンクの精度と品質を改善し、生成パイプライン全体のパフォーマンスを向上させることに重点を置いてきた。
オープンドメイン質問応答における無関係情報検索の効果について検討し,LLM出力の品質に対する顕著な有害な影響を明らかにする。
論文 参考訳(メタデータ) (2024-11-25T06:48:38Z) - GIVE: Structured Reasoning with Knowledge Graph Inspired Veracity Extrapolation [108.2008975785364]
Graph Inspired Veracity Extrapolation (GIVE)は、パラメトリックメモリと非パラメトリックメモリを統合する新しい推論フレームワークである。
本手法は,ゴールド回答検索ではなく,専門家の問題解決に類似した論理的・段階的推論手法を提案する。
論文 参考訳(メタデータ) (2024-10-11T03:05:06Z) - Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models [33.662269036173456]
大規模言語モデル(LLM)は、関連する知識の欠如により、現実世界の応用において幻覚に悩まされることがある。
KGQA(Knowledge Graph Question Answering)は、統合のための重要な手掛かりとなる。
LLMの対話型学習機能を活用してグラフ上での推論と議論を行う対話型KGQAフレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-05T01:11:58Z) - Prompting Large Language Models with Knowledge Graphs for Question Answering Involving Long-tail Facts [50.06633829833144]
大規模言語モデル(LLM)は、様々なNLPタスクを実行するのに効果的であるが、広範囲の現実世界の知識を必要とするタスクを扱うのに苦労する。
我々は,関連する疑問に答えるために,長期的事実の知識を必要とするベンチマークを提案する。
実験の結果,LLMだけでこれらの疑問に答えるのに苦労していることが明らかとなった。
論文 参考訳(メタデータ) (2024-05-10T15:10:20Z) - A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models [71.25225058845324]
大規模言語モデル(LLM)は、言語理解と生成において革命的な能力を示している。
Retrieval-Augmented Generation (RAG)は、信頼性と最新の外部知識を提供する。
RA-LLMは、モデルの内部知識に頼るのではなく、外部および権威的な知識ベースを活用するために登場した。
論文 参考訳(メタデータ) (2024-05-10T02:48:45Z) - Cross-Data Knowledge Graph Construction for LLM-enabled Educational Question-Answering System: A Case Study at HCMUT [2.8000537365271367]
大規模言語モデル(LLM)は活発な研究トピックとして現れている。
LLMはイベントの記憶、新しい情報の導入、ドメイン固有の問題や幻覚への対処において課題に直面している。
本稿では,複数のデータソースから知識グラフを自動的に構築する手法を提案する。
論文 参考訳(メタデータ) (2024-04-14T16:34:31Z) - SPARQL Generation: an analysis on fine-tuning OpenLLaMA for Question
Answering over a Life Science Knowledge Graph [0.0]
生命科学知識グラフを用いた質問応答のためのOpenLlama LLMの微調整戦略を評価する。
本稿では,既存のクエリのセットを知識グラフ上に拡張するためのエンドツーエンドデータ拡張手法を提案する。
また、意味のある変数名やインラインコメントなど、クエリにおける意味的な"キュー"の役割についても検討する。
論文 参考訳(メタデータ) (2024-02-07T07:24:01Z) - DIVKNOWQA: Assessing the Reasoning Ability of LLMs via Open-Domain
Question Answering over Knowledge Base and Text [73.68051228972024]
大きな言語モデル(LLM)は印象的な生成能力を示すが、内部知識に依存すると幻覚に悩まされる。
検索拡張LDMは、外部知識においてLLMを基盤とする潜在的な解決策として出現している。
論文 参考訳(メタデータ) (2023-10-31T04:37:57Z) - Self-Knowledge Guided Retrieval Augmentation for Large Language Models [59.771098292611846]
大規模言語モデル(LLM)はタスク固有の微調整なしで優れた性能を示す。
検索に基づく手法は、非パラメトリックな世界知識を提供し、質問応答のようなタスクのパフォーマンスを向上させることができる。
SKR(Self-Knowledge guided Retrieval augmentation)は、LLMがこれまで遭遇した質問を参照できるようにする、シンプルで効果的な方法である。
論文 参考訳(メタデータ) (2023-10-08T04:22:33Z) - Synergistic Interplay between Search and Large Language Models for
Information Retrieval [141.18083677333848]
InteRにより、RMはLLM生成した知識コレクションを使用してクエリの知識を拡張することができる。
InteRは、最先端手法と比較して総合的に優れたゼロショット検索性能を実現する。
論文 参考訳(メタデータ) (2023-05-12T11:58:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。