論文の概要: Visibility into AI Agents
- arxiv url: http://arxiv.org/abs/2401.13138v4
- Date: Wed, 10 Apr 2024 13:57:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-11 18:56:10.830814
- Title: Visibility into AI Agents
- Title(参考訳): AIエージェントへの可視性
- Authors: Alan Chan, Carson Ezell, Max Kaufmann, Kevin Wei, Lewis Hammond, Herbie Bradley, Emma Bluemke, Nitarshan Rajkumar, David Krueger, Noam Kolt, Lennart Heim, Markus Anderljung,
- Abstract要約: AIエージェントに対する商業的、科学的、政府的、個人的活動の委譲の増加は、既存の社会的リスクを悪化させる可能性がある。
エージェント識別子,リアルタイム監視,アクティビティログという,AIエージェントの視認性を高めるための3つの尺度を評価した。
- 参考スコア(独自算出の注目度): 9.067567737098594
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Increased delegation of commercial, scientific, governmental, and personal activities to AI agents -- systems capable of pursuing complex goals with limited supervision -- may exacerbate existing societal risks and introduce new risks. Understanding and mitigating these risks involves critically evaluating existing governance structures, revising and adapting these structures where needed, and ensuring accountability of key stakeholders. Information about where, why, how, and by whom certain AI agents are used, which we refer to as visibility, is critical to these objectives. In this paper, we assess three categories of measures to increase visibility into AI agents: agent identifiers, real-time monitoring, and activity logging. For each, we outline potential implementations that vary in intrusiveness and informativeness. We analyze how the measures apply across a spectrum of centralized through decentralized deployment contexts, accounting for various actors in the supply chain including hardware and software service providers. Finally, we discuss the implications of our measures for privacy and concentration of power. Further work into understanding the measures and mitigating their negative impacts can help to build a foundation for the governance of AI agents.
- Abstract(参考訳): 商業的、科学的、政府的、個人的活動をAIエージェントに委任し、限られた監督下で複雑な目標を追求できるシステムに委任することで、既存の社会的リスクが悪化し、新たなリスクがもたらされる可能性がある。
これらのリスクを理解し緩和するには、既存のガバナンス構造を批判的に評価し、必要に応じてこれらの構造を修正し、適応し、主要なステークホルダーの責任を保証することが必要です。
特定のAIエージェントが使われている場所、理由、方法、そして誰が使用されるのかに関する情報は、これらの目的に不可欠である。
本稿では,エージェント識別子,リアルタイム監視,アクティビティログという,AIエージェントの視認性を高めるための3つの尺度を評価する。
それぞれ、侵入性と情報性に異なる潜在的な実装について概説する。
ハードウェアやソフトウェアサービスプロバイダを含むサプライチェーンのさまざまなアクターを考慮し、分散デプロイメントのコンテキストを通じて、この措置が中央集権的な範囲でどのように適用されるかを分析する。
最後に、プライバシと集中力に対する我々の対策がもたらす意味について論じる。
措置の理解と負の影響軽減に関するさらなる取り組みは、AIエージェントのガバナンスのための基盤を構築するのに役立つ。
関連論文リスト
- Multi-Agent Risks from Advanced AI [90.74347101431474]
先進的なAIのマルチエージェントシステムは、新規で未発見のリスクを生じさせる。
エージェントのインセンティブに基づく3つの重要な障害モードと7つの重要なリスク要因を同定する。
各リスクのいくつかの重要な事例と、それらを緩和するための有望な方向性を強調します。
論文 参考訳(メタデータ) (2025-02-19T23:03:21Z) - AgentOps: Enabling Observability of LLM Agents [12.49728300301026]
大規模言語モデル(LLM)エージェントは、自律的で非決定論的行動のため、AI安全性に重大な懸念を提起する。
本稿では,エージェントのライフサイクル全体を通じて追跡されるべきアーティファクトと関連するデータを特定し,効果的な観測可能性を実現するための,AgentOpsの包括的な分類法を提案する。
私たちの分類は、監視、ロギング、分析をサポートするAgentOpsインフラストラクチャを設計、実装するためのリファレンステンプレートとして機能します。
論文 参考訳(メタデータ) (2024-11-08T02:31:03Z) - Large Model Based Agents: State-of-the-Art, Cooperation Paradigms, Security and Privacy, and Future Trends [64.57762280003618]
近い将来、LM駆動の汎用AIエージェントが、生産タスクにおいて不可欠なツールとして機能することが予想される。
本稿では,将来のLMエージェントの自律的協調に関わるシナリオについて検討する。
論文 参考訳(メタデータ) (2024-09-22T14:09:49Z) - Safeguarding AI Agents: Developing and Analyzing Safety Architectures [0.0]
本稿では,人間チームと連携するAIシステムにおける安全対策の必要性について論じる。
我々は,AIエージェントシステムにおける安全プロトコルを強化する3つのフレームワークを提案し,評価する。
これらのフレームワークはAIエージェントシステムの安全性とセキュリティを大幅に強化することができると結論付けている。
論文 参考訳(メタデータ) (2024-09-03T10:14:51Z) - AI Agents Under Threat: A Survey of Key Security Challenges and Future Pathways [10.16690494897609]
人工知能(AI)エージェント(英: Artificial Intelligence, AI)は、自律的にタスクを実行したり、事前に定義された目的やデータ入力に基づいて決定を行うソフトウェアエンティティである。
この調査は、AIエージェントが直面している新たなセキュリティ脅威を掘り下げ、これらを4つの重要な知識ギャップに分類する。
これらの脅威を体系的にレビューすることにより、この論文はAIエージェントの保護における進歩と既存の制限の両方を強調している。
論文 参考訳(メタデータ) (2024-06-04T01:22:31Z) - Mapping LLM Security Landscapes: A Comprehensive Stakeholder Risk Assessment Proposal [0.0]
本稿では,従来のシステムにおけるリスク評価手法のようなツールを用いたリスク評価プロセスを提案する。
我々は、潜在的な脅威要因を特定し、脆弱性要因に対して依存するシステムコンポーネントをマッピングするためのシナリオ分析を行う。
3つの主要株主グループに対する脅威もマップ化しています。
論文 参考訳(メタデータ) (2024-03-20T05:17:22Z) - Prioritizing Safeguarding Over Autonomy: Risks of LLM Agents for Science [65.77763092833348]
大規模言語モデル(LLM)を利用したインテリジェントエージェントは、自律的な実験を行い、様々な分野にわたる科学的発見を促進する上で、大きな可能性を証明している。
彼らの能力は有望だが、これらのエージェントは安全性を慎重に考慮する必要がある新たな脆弱性も導入している。
本稿では,科学領域におけるLSMをベースとしたエージェントの脆弱性の徹底的な調査を行い,その誤用に伴う潜在的なリスクに光を当て,安全性対策の必要性を強調した。
論文 参考訳(メタデータ) (2024-02-06T18:54:07Z) - AgentBoard: An Analytical Evaluation Board of Multi-turn LLM Agents [74.16170899755281]
本稿では,LLMエージェントの分析的評価に適したオープンソース評価フレームワークであるAgentBoardを紹介する。
AgentBoardは、インクリメンタルな進歩と包括的な評価ツールキットをキャプチャする、きめ細かい進捗率のメトリクスを提供する。
これはLLMエージェントの能力と限界に光を当てるだけでなく、その性能の解釈可能性も最前線に広める。
論文 参考訳(メタデータ) (2024-01-24T01:51:00Z) - PsySafe: A Comprehensive Framework for Psychological-based Attack, Defense, and Evaluation of Multi-agent System Safety [70.84902425123406]
大規模言語モデル(LLM)で拡張されたマルチエージェントシステムは、集団知能において重要な能力を示す。
しかし、悪意のある目的のためにこのインテリジェンスを誤用する可能性があり、重大なリスクが生じる。
本研究では,エージェント心理学を基盤とした枠組み(PsySafe)を提案し,エージェントのダークパーソナリティ特性がリスク行動にどう影響するかを明らかにする。
実験の結果,エージェント間の集団的危険行動,エージェントが危険な行動を行う際の自己反射,エージェントの心理的評価と危険な行動との相関など,いくつかの興味深い現象が明らかになった。
論文 参考訳(メタデータ) (2024-01-22T12:11:55Z) - Global and Local Analysis of Interestingness for Competency-Aware Deep
Reinforcement Learning [0.0]
我々は「興味」の分析に基づく説明可能な強化学習(RL)のための最近提案されたフレームワークを拡張した。
当社のツールは,RLエージェントの能力,能力と限界に関する洞察を提供し,ユーザがより情報的な意思決定を行えるようにします。
論文 参考訳(メタデータ) (2022-11-11T17:48:42Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。