Trip Planning for Autonomous Vehicles with Wireless Data Transfer Needs
Using Reinforcement Learning
- URL: http://arxiv.org/abs/2309.12534v1
- Date: Thu, 21 Sep 2023 23:19:16 GMT
- Title: Trip Planning for Autonomous Vehicles with Wireless Data Transfer Needs
Using Reinforcement Learning
- Authors: Yousef AlSaqabi, Bhaskar Krishnamachari
- Abstract summary: We propose a novel reinforcement learning solution that prioritizes high bandwidth roads to meet a vehicles data transfer requirement.
We compare this approach to traffic-unaware and bandwidth-unaware baselines to show how much better it performs under heterogeneous traffic.
- Score: 7.23389716633927
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With recent advancements in the field of communications and the Internet of
Things, vehicles are becoming more aware of their environment and are evolving
towards full autonomy. Vehicular communication opens up the possibility for
vehicle-to-infrastructure interaction, where vehicles could share information
with components such as cameras, traffic lights, and signage that support a
countrys road system. As a result, vehicles are becoming more than just a means
of transportation; they are collecting, processing, and transmitting massive
amounts of data used to make driving safer and more convenient. With 5G
cellular networks and beyond, there is going to be more data bandwidth
available on our roads, but it may be heterogeneous because of limitations like
line of sight, infrastructure, and heterogeneous traffic on the road. This
paper addresses the problem of route planning for autonomous vehicles in urban
areas accounting for both driving time and data transfer needs. We propose a
novel reinforcement learning solution that prioritizes high bandwidth roads to
meet a vehicles data transfer requirement, while also minimizing driving time.
We compare this approach to traffic-unaware and bandwidth-unaware baselines to
show how much better it performs under heterogeneous traffic. This solution
could be used as a starting point to understand what good policies look like,
which could potentially yield faster, more efficient heuristics in the future.
Related papers
- Tel2Veh: Fusion of Telecom Data and Vehicle Flow to Predict Camera-Free Traffic via a Spatio-Temporal Framework [26.92971702938603]
We propose a framework that extracts features and integrates them with a graph neural network (GNN)-based fusion to discern disparities.
This work advances the use of telecom data in transportation and pioneers the fusion of telecom and vision-based data, offering solutions for traffic management.
arXiv Detail & Related papers (2024-03-05T06:37:14Z) - A V2X-based Privacy Preserving Federated Measuring and Learning System [0.0]
We propose a federated measurement and learning system that provides real-time data to fellow vehicles over Vehicle-to-Vehicle (V2V) communication.
We also operate a federated learning scheme over the Vehicle-to-Network (V2N) link to create a predictive model of the transportation network.
Results indicate that the proposed FL scheme improves learning performance and prevents eavesdropping at the aggregator server side.
arXiv Detail & Related papers (2024-01-24T23:11:11Z) - Automatic Extraction of Relevant Road Infrastructure using Connected
vehicle data and Deep Learning Model [4.235459779667272]
We propose a novel approach that leverages connected vehicle data and cutting-edge deep learning techniques.
By employing geohashing to segment vehicle trajectories and then generating image representations of road segments, we utilize the YOLOv5 algorithm for accurate classification of both straight road segments and intersections.
Experimental results demonstrate an impressive overall classification accuracy of 95%, with straight roads achieving a remarkable 97% F1 score and intersections reaching a 90% F1 score.
arXiv Detail & Related papers (2023-08-10T15:57:47Z) - Reinforcement Learning based Cyberattack Model for Adaptive Traffic
Signal Controller in Connected Transportation Systems [61.39400591328625]
In a connected transportation system, adaptive traffic signal controllers (ATSC) utilize real-time vehicle trajectory data received from vehicles to regulate green time.
This wirelessly connected ATSC increases cyber-attack surfaces and increases their vulnerability to various cyber-attack modes.
One such mode is a'sybil' attack in which an attacker creates fake vehicles in the network.
An RL agent is trained to learn an optimal rate of sybil vehicle injection to create congestion for an approach(s)
arXiv Detail & Related papers (2022-10-31T20:12:17Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
We propose a DRL-based signal control system that adjusts traffic signals according to the current congestion situation on intersections.
To deal with the congestion on roads behind the intersection, we used re-routing technique to load balance the vehicles on road networks.
arXiv Detail & Related papers (2022-06-28T02:46:20Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
We introduce COOPERNAUT, an end-to-end learning model that uses cross-vehicle perception for vision-based cooperative driving.
Our experiments on AutoCastSim suggest that our cooperative perception driving models lead to a 40% improvement in average success rate.
arXiv Detail & Related papers (2022-05-04T17:55:12Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Online and Adaptive Parking Availability Mapping: An Uncertainty-Aware
Active Sensing Approach for Connected Vehicles [1.7259824817932292]
We propose an online and adaptive scheme for parking availability mapping.
Specifically, we adopt an information-seeking active sensing approach to select the incoming data, thus preserving the onboard storage and processing resources.
We compare the proposed algorithm with several baselines, which attain inferior performance in terms of mapping convergence speed and adaptivity capabilities.
arXiv Detail & Related papers (2021-05-01T13:35:36Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.