論文の概要: Towards Goal-oriented Large Language Model Prompting: A Survey
- arxiv url: http://arxiv.org/abs/2401.14043v1
- Date: Thu, 25 Jan 2024 09:47:55 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-26 15:09:24.686256
- Title: Towards Goal-oriented Large Language Model Prompting: A Survey
- Title(参考訳): 目標指向大規模言語モデル推進に向けて:調査
- Authors: Haochen Li, Jonathan Leung, Zhiqi Shen
- Abstract要約: 大規模言語モデル(LLM)は、様々な下流タスクで顕著なパフォーマンスを示している。
本稿では,人為的仮定を保ちながら,設計プロンプトの限界を強調することを目的とする。
- 参考スコア(独自算出の注目度): 4.9033004387279995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Large Language Models (LLMs) have shown prominent performance in various
downstream tasks in which prompt engineering plays a pivotal role in optimizing
LLMs' performance. This paper, not as an overview of current prompt engineering
methods, aims to highlight the limitation of designing prompts while holding an
anthropomorphic assumption that expects LLMs to think like humans. From our
review of 35 representative studies, we demonstrate that a goal-oriented prompt
formulation, which guides LLMs to follow established human logical thinking,
significantly improves the performance of LLMs. Furthermore, We introduce a
novel taxonomy that categorizes goal-oriented prompting methods into five
interconnected stages and we demonstrate the broad applicability of our
framework by summarizing ten applicable tasks. With four future directions
proposed, we hope to further emphasize and promote goal-oriented prompt
engineering.
- Abstract(参考訳): 大規模言語モデル(LLM)は様々な下流タスクにおいて顕著な性能を示し、LLMのパフォーマンスを最適化する上で、エンジニアリングが重要な役割を果たす。
本稿では,現在のプロンプトエンジニアリング手法の概要ではなく,llmが人間のように考えることを期待する擬人化仮説を維持しつつ,プロンプト設計の限界を強調することを目的とする。
提案する35の代表的な研究のレビューから, LLM が確立された論理的思考に従うための目標指向のプロンプト定式化が, LLM の性能を著しく向上させることを示す。
さらに,目標指向のプロンプト手法を5つの相互接続段階に分類した新しい分類法を導入し,適用可能なタスクを10つまとめることで,フレームワークの幅広い適用性を示す。
今後の4つの方向性が提案され、ゴール指向のプロンプトエンジニアリングをさらに強調し、推進したいと思っています。
関連論文リスト
- MME-Survey: A Comprehensive Survey on Evaluation of Multimodal LLMs [97.94579295913606]
MLLM(Multimodal Large Language Models)は、産業と学術の両方から注目を集めている。
開発プロセスでは、モデルの改善に関する直感的なフィードバックとガイダンスを提供するため、評価が重要である。
この研究は、研究者に異なるニーズに応じてMLLMを効果的に評価する方法を簡単に把握し、より良い評価方法を促すことを目的としている。
論文 参考訳(メタデータ) (2024-11-22T18:59:54Z) - LLM4PR: Improving Post-Ranking in Search Engine with Large Language Models [9.566432486156335]
検索エンジンにおける後処理のための大規模言語モデル(LLM4PR)
検索エンジン(LLM4PR)におけるポストランキングのための大規模言語モデル(Large Language Models for Post-Ranking)という新しいパラダイムを導入する。
論文 参考訳(メタデータ) (2024-11-02T08:36:16Z) - MAPO: Boosting Large Language Model Performance with Model-Adaptive Prompt Optimization [73.7779735046424]
異なるプロンプトを異なるLarge Language Models (LLM) に適応させることで,NLP の様々な下流タスクにまたがる機能の向上が期待できる。
次に、下流タスクにおける各LLMに対して、元のプロンプトを最適化するモデル適応プロンプト(MAPO)手法を提案する。
論文 参考訳(メタデータ) (2024-07-04T18:39:59Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - A Survey on Efficient Inference for Large Language Models [25.572035747669275]
大きな言語モデル(LLM)は、様々なタスクにまたがる顕著なパフォーマンスのために、広く注目を集めている。
LLM推論のかなりの計算とメモリ要件は、リソース制約のあるシナリオへの展開に困難をもたらす。
本稿では,LLMの効率的な推論について,既存の文献を包括的に調査する。
論文 参考訳(メタデータ) (2024-04-22T15:53:08Z) - A Survey on Prompting Techniques in LLMs [0.0]
自己回帰型大規模言語モデルは自然言語処理のランドスケープに変化をもたらした。
本研究は,既存の文献の分類手法について紹介し,この分類法に基づく簡潔な調査を行う。
我々は、将来の研究の方向性として役立つ自己回帰型LSMの推進という領域において、いくつかの未解決の問題を特定した。
論文 参考訳(メタデータ) (2023-11-28T17:56:34Z) - A Comprehensive Overview of Large Language Models [68.22178313875618]
大規模言語モデル(LLM)は、最近自然言語処理タスクにおいて顕著な機能を示した。
本稿では, LLM関連概念の幅広い範囲について, 既存の文献について概説する。
論文 参考訳(メタデータ) (2023-07-12T20:01:52Z) - PRISMA-DFLLM: An Extension of PRISMA for Systematic Literature Reviews
using Domain-specific Finetuned Large Language Models [0.0]
本稿では,Large Language Models(LLMs)のパワーと,PRISMA(Preferred Reporting Items for Systematic Reviews and Meta-Analyses)の厳密な報告ガイドラインを組み合わせたAI対応方法論フレームワークを提案する。
厳密なSLRプロセスの結果として選択されたドメイン固有の学術論文にLCMを微調整することにより、提案するPRISMA-DFLLMレポートガイドラインは、より効率、再利用性、拡張性を達成する可能性を秘めている。
論文 参考訳(メタデータ) (2023-06-15T02:52:50Z) - A Survey on Large Language Models for Recommendation [77.91673633328148]
大規模言語モデル(LLM)は自然言語処理(NLP)の分野で強力なツールとして登場した。
本調査では,これらのモデルを2つの主要なパラダイム(DLLM4Rec)とジェネレーティブLSM4Rec(GLLM4Rec)に分類する。
論文 参考訳(メタデータ) (2023-05-31T13:51:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。