Set-Based Training for Neural Network Verification
- URL: http://arxiv.org/abs/2401.14961v3
- Date: Tue, 14 Jan 2025 08:56:48 GMT
- Title: Set-Based Training for Neural Network Verification
- Authors: Lukas Koller, Tobias Ladner, Matthias Althoff,
- Abstract summary: Small input perturbations can significantly affect the outputs of a neural network.
To ensure safety of safety-critical environments, the robustness of a neural network must be verified.
We present a novel set-based training procedure in which we compute the set of possible outputs.
- Score: 8.97708612393722
- License:
- Abstract: Neural networks are vulnerable to adversarial attacks, i.e., small input perturbations can significantly affect the outputs of a neural network. Therefore, to ensure safety of safety-critical environments, the robustness of a neural network must be formally verified against input perturbations, e.g., from noisy sensors. To improve the robustness of neural networks and thus simplify the formal verification, we present a novel set-based training procedure in which we compute the set of possible outputs given the set of possible inputs and compute for the first time a gradient set, i.e., each possible output has a different gradient. Therefore, we can directly reduce the size of the output enclosure by choosing gradients toward its center. Small output enclosures increase the robustness of a neural network and, at the same time, simplify its formal verification. The latter benefit is due to the fact that a larger size of propagated sets increases the conservatism of most verification methods. Our extensive evaluation demonstrates that set-based training produces robust neural networks with competitive performance, which can be verified using fast (polynomial-time) verification algorithms due to the reduced output set.
Related papers
- Expediting Neural Network Verification via Network Reduction [4.8621567234713305]
We propose a network reduction technique as a pre-processing method prior to verification.
The proposed method reduces neural networks via eliminating stable ReLU neurons, and transforming them into a sequential neural network.
We instantiate the reduction technique on the state-of-the-art complete and incomplete verification tools.
arXiv Detail & Related papers (2023-08-07T06:23:24Z) - Fully Automatic Neural Network Reduction for Formal Verification [8.017543518311196]
We introduce a fully automatic and sound reduction of neural networks using reachability analysis.
The soundness ensures that the verification of the reduced network entails the verification of the original network.
We show that our approach can reduce the number of neurons to a fraction of the original number of neurons with minor outer-approximation.
arXiv Detail & Related papers (2023-05-03T07:13:47Z) - Neural Clamping: Joint Input Perturbation and Temperature Scaling for Neural Network Calibration [62.4971588282174]
We propose a new post-processing calibration method called Neural Clamping.
Our empirical results show that Neural Clamping significantly outperforms state-of-the-art post-processing calibration methods.
arXiv Detail & Related papers (2022-09-23T14:18:39Z) - Can pruning improve certified robustness of neural networks? [106.03070538582222]
We show that neural network pruning can improve empirical robustness of deep neural networks (NNs)
Our experiments show that by appropriately pruning an NN, its certified accuracy can be boosted up to 8.2% under standard training.
We additionally observe the existence of certified lottery tickets that can match both standard and certified robust accuracies of the original dense models.
arXiv Detail & Related papers (2022-06-15T05:48:51Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Verifying Low-dimensional Input Neural Networks via Input Quantization [12.42030531015912]
This paper revisits the original problem of verifying ACAS Xu networks.
We propose to prepend an input quantization layer to the network.
Our technique can deliver exact verification results immune to floating-point error.
arXiv Detail & Related papers (2021-08-18T03:42:05Z) - SignalNet: A Low Resolution Sinusoid Decomposition and Estimation
Network [79.04274563889548]
We propose SignalNet, a neural network architecture that detects the number of sinusoids and estimates their parameters from quantized in-phase and quadrature samples.
We introduce a worst-case learning threshold for comparing the results of our network relative to the underlying data distributions.
In simulation, we find that our algorithm is always able to surpass the threshold for three-bit data but often cannot exceed the threshold for one-bit data.
arXiv Detail & Related papers (2021-06-10T04:21:20Z) - Performance Bounds for Neural Network Estimators: Applications in Fault
Detection [2.388501293246858]
We exploit recent results in quantifying the robustness of neural networks to construct and tune a model-based anomaly detector.
In tuning, we specifically provide upper bounds on the rate of false alarms expected under normal operation.
arXiv Detail & Related papers (2021-03-22T19:23:08Z) - Artificial Neural Networks generated by Low Discrepancy Sequences [59.51653996175648]
We generate artificial neural networks as random walks on a dense network graph.
Such networks can be trained sparse from scratch, avoiding the expensive procedure of training a dense network and compressing it afterwards.
We demonstrate that the artificial neural networks generated by low discrepancy sequences can achieve an accuracy within reach of their dense counterparts at a much lower computational complexity.
arXiv Detail & Related papers (2021-03-05T08:45:43Z) - Reduced-Order Neural Network Synthesis with Robustness Guarantees [0.0]
Machine learning algorithms are being adapted to run locally on board, potentially hardware limited, devices to improve user privacy, reduce latency and be more energy efficient.
To address this issue, a method to automatically synthesize reduced-order neural networks (having fewer neurons) approxing the input/output mapping of a larger one is introduced.
Worst-case bounds for this approximation error are obtained and the approach can be applied to a wide variety of neural networks architectures.
arXiv Detail & Related papers (2021-02-18T12:03:57Z) - Resolution Adaptive Networks for Efficient Inference [53.04907454606711]
We propose a novel Resolution Adaptive Network (RANet), which is inspired by the intuition that low-resolution representations are sufficient for classifying "easy" inputs.
In RANet, the input images are first routed to a lightweight sub-network that efficiently extracts low-resolution representations.
High-resolution paths in the network maintain the capability to recognize the "hard" samples.
arXiv Detail & Related papers (2020-03-16T16:54:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.