論文の概要: Brain Tumor Diagnosis Using Quantum Convolutional Neural Networks
- arxiv url: http://arxiv.org/abs/2401.15804v1
- Date: Sun, 28 Jan 2024 23:27:06 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-30 16:25:58.510240
- Title: Brain Tumor Diagnosis Using Quantum Convolutional Neural Networks
- Title(参考訳): 量子畳み込みニューラルネットワークを用いた脳腫瘍診断
- Authors: Muhammad Al-Zafar Khan, Nouhaila Innan, Abdullah Al Omar Galib,
Mohamed Bennai
- Abstract要約: 本研究は、脳がん画像の特定と分類に適したQCNNモデルの高精度設計と実行について詳述する。
提案したQCNNアーキテクチャとアルゴリズムは99.67%の例外的な分類精度を達成し,臨床応用の強力なツールとしての可能性を示した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Integrating Quantum Convolutional Neural Networks (QCNNs) into medical
diagnostics represents a transformative advancement in the classification of
brain tumors. This research details a high-precision design and execution of a
QCNN model specifically tailored to identify and classify brain cancer images.
Our proposed QCNN architecture and algorithm have achieved an exceptional
classification accuracy of 99.67%, demonstrating the model's potential as a
powerful tool for clinical applications. The remarkable performance of our
model underscores its capability to facilitate rapid and reliable brain tumor
diagnoses, potentially streamlining the decision-making process in treatment
planning. These findings strongly support the further investigation and
application of quantum computing and quantum machine learning methodologies in
medical imaging, suggesting a future where quantum-enhanced diagnostics could
significantly elevate the standard of patient care and treatment outcomes.
- Abstract(参考訳): 量子畳み込みニューラルネットワーク(qcnns)の医療診断への統合は、脳腫瘍の分類の革新的な進歩を意味する。
本研究は、脳がん画像の特定と分類に適したQCNNモデルの高精度設計と実行について詳述する。
提案したQCNNアーキテクチャとアルゴリズムは99.67%の例外的な分類精度を達成し,臨床応用の強力なツールとしての可能性を示した。
このモデルの性能は、迅速かつ信頼性の高い脳腫瘍診断を促進する能力を強調し、治療計画における意思決定プロセスの合理化を図っている。
これらの発見は、医療画像における量子コンピューティングと量子機械学習方法論のさらなる研究と応用を強く支持しており、量子エンハンスド診断が患者のケアと治療結果の標準を著しく高める可能性を示唆している。
関連論文リスト
- Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
脳腫瘍は、急速な成長と転移の可能性のために深刻な健康上の脅威となる。
本研究の目的は,脳腫瘍分類の効率と精度を向上させることである。
我々のアプローチは、ViT(Vision Transformer)、Capsule Neural Network(CapsNet)、ResNet-152やVGG16といった畳み込みニューラルネットワーク(CNN)など、最先端のディープラーニングアルゴリズムを組み合わせる。
論文 参考訳(メタデータ) (2024-10-31T07:28:06Z) - Machine learning approach to brain tumor detection and classification [11.108853789803597]
脳MRI画像を用いて脳腫瘍を検出し分類するために,様々な統計的および機械学習モデルを適用した。
以上の結果から,CNNは他のモデルよりも優れており,最高の性能を実現していることがわかった。
本研究では、機械学習アプローチが脳腫瘍の検出と分類に適していることを示し、現実の医療応用を促進する。
論文 参考訳(メタデータ) (2024-10-16T15:52:32Z) - EG-SpikeFormer: Eye-Gaze Guided Transformer on Spiking Neural Networks for Medical Image Analysis [32.59232529143777]
医用画像の診断関連領域に注意を向けるために、眼球データを含む臨床作業に適したSNNアーキテクチャであるEG-SpikeFormerを紹介する。
提案手法は,特に臨床データに制限があり,信頼性,汎用性,透明性が要求されるシナリオにおいて,従来のモデルでよく見られるショートカット学習の問題に効果的に対処する。
我々のEG-SpikeFormerは、医療画像予測タスクにおいて優れたエネルギー効率と性能を示すだけでなく、マルチモーダル情報アライメントによる臨床関連性を高める。
論文 参考訳(メタデータ) (2024-10-12T23:54:44Z) - CompressedMediQ: Hybrid Quantum Machine Learning Pipeline for High-Dimensional Neuroimaging Data [1.3359321655273804]
本稿では,新しいハイブリッド量子古典型機械学習パイプラインであるCompressedMediQを紹介する。
高次元のマルチクラス・ニューロイメージングデータ解析に関連する計算課題に対処する。
論文 参考訳(メタデータ) (2024-09-13T07:03:01Z) - Pediatric TSC-Related Epilepsy Classification from Clinical MR Images Using Quantum Neural Network [17.788579893962492]
本研究では,従来の畳み込みニューラルネットワークと量子ニューラルネットワークをシームレスに統合した新しいディープラーニングモデルQResNetを紹介する。
TSCMRI画像分類において,従来の3D-ResNetモデルと比較してQResNetの優れた性能を示す。
論文 参考訳(メタデータ) (2024-08-08T14:11:06Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
神経変性疾患(神経変性疾患、ND)は、伝統的に医学的診断とモニタリングのために広範囲の医療資源と人的努力を必要とする。
重要な疾患関連運動症状として、ヒトの歩行を利用して異なるNDを特徴づけることができる。
人工知能(AI)モデルの現在の進歩は、NDの識別と分類のための自動歩行分析を可能にする。
論文 参考訳(メタデータ) (2024-05-21T06:44:40Z) - Diagnose Like a Radiologist: Hybrid Neuro-Probabilistic Reasoning for
Attribute-Based Medical Image Diagnosis [42.624671531003166]
本稿では,属性に基づく医用画像診断のためのハイブリッド型ニューロ確率推論アルゴリズムを提案する。
我々は,ハイブリッド推論アルゴリズムを2つの困難な画像診断タスクに適用することに成功している。
論文 参考訳(メタデータ) (2022-08-19T12:06:46Z) - CKD-TransBTS: Clinical Knowledge-Driven Hybrid Transformer with
Modality-Correlated Cross-Attention for Brain Tumor Segmentation [37.39921484146194]
磁気共鳴画像(MRI)における脳腫瘍のセグメンテーションは、脳腫瘍の診断、癌管理、研究目的に不可欠である。
10年にわたるBraTSチャレンジの成功により、様々な技術的側面においてBTSの難しさに取り組むために、多くの優れたBTSモデルが提案されている。
CKD-TransBTSと呼ばれる臨床知識駆動型脳腫瘍分節モデルを提案する。
論文 参考訳(メタデータ) (2022-07-15T09:35:29Z) - BrainIB: Interpretable Brain Network-based Psychiatric Diagnosis with Graph Information Bottleneck [38.281423869037575]
機能的磁気共鳴画像(fMRI)解析のための新しいグラフニューラルネットワーク(GNN)フレームワークBrainIBを提案する。
BrainIBは、脳内の最も情報に富むエッジ(つまり、部分グラフ)を識別し、目に見えないデータにうまく一般化することができる。
論文 参考訳(メタデータ) (2022-05-07T09:35:23Z) - Translational Quantum Machine Intelligence for Modeling Tumor Dynamics
in Oncology [18.069876260017605]
量子マシンインテリジェンス(Quantum Machine Intelligence)は、量子力学の観点からの腫瘍力学の非並列的な洞察を提供する。
本稿では,治療効果に関する腫瘍負担の量子力学を定量化する,$eta-$Netという新しいハイブリッド量子古典型ニューラルネットワークを提案する。
論文 参考訳(メタデータ) (2022-02-21T08:46:58Z) - Neuro-symbolic Neurodegenerative Disease Modeling as Probabilistic
Programmed Deep Kernels [93.58854458951431]
本稿では、神経変性疾患のパーソナライズされた予測モデリングのための、確率的プログラムによる深層カーネル学習手法を提案する。
我々の分析は、ニューラルネットワークとシンボリック機械学習のアプローチのスペクトルを考慮する。
我々は、アルツハイマー病の予測問題について評価を行い、深層学習を超越した結果を得た。
論文 参考訳(メタデータ) (2020-09-16T15:16:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。