論文の概要: History-Aware Conversational Dense Retrieval
- arxiv url: http://arxiv.org/abs/2401.16659v2
- Date: Fri, 16 Feb 2024 16:55:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 19:06:00.195609
- Title: History-Aware Conversational Dense Retrieval
- Title(参考訳): 歴史を意識した会話難読検索
- Authors: Fengran Mo, Chen Qu, Kelong Mao, Tianyu Zhu, Zhan Su, Kaiyu Huang,
Jian-Yun Nie
- Abstract要約: 本稿では,コンテキスト依存型クエリ再構成と監視信号の自動マイニングという2つのアイデアを取り入れた,履歴認識型会話用Dense Retrieval(HAConvDR)システムを提案する。
2つの公開対話型検索データセットの実験は、HAConvDRの履歴モデリング機能の改善を実証している。
- 参考スコア(独自算出の注目度): 32.76811604560395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conversational search facilitates complex information retrieval by enabling
multi-turn interactions between users and the system. Supporting such
interactions requires a comprehensive understanding of the conversational
inputs to formulate a good search query based on historical information. In
particular, the search query should include the relevant information from the
previous conversation turns. However, current approaches for conversational
dense retrieval primarily rely on fine-tuning a pre-trained ad-hoc retriever
using the whole conversational search session, which can be lengthy and noisy.
Moreover, existing approaches are limited by the amount of manual supervision
signals in the existing datasets. To address the aforementioned issues, we
propose a History-Aware Conversational Dense Retrieval (HAConvDR) system, which
incorporates two ideas: context-denoised query reformulation and automatic
mining of supervision signals based on the actual impact of historical turns.
Experiments on two public conversational search datasets demonstrate the
improved history modeling capability of HAConvDR, in particular for long
conversations with topic shifts.
- Abstract(参考訳): 会話検索は,ユーザとシステム間のマルチターンインタラクションを可能にすることで,複雑な情報検索を容易にする。
このようなインタラクションをサポートするには、過去の情報に基づいて優れた検索クエリを定式化するために、会話入力の包括的な理解が必要である。
特に、検索クエリには、前の会話のターンから関連する情報を含めるべきである。
しかし,会話高密度検索への現在のアプローチは,会話検索セッション全体を用いて事前学習したアドホック検索を微調整することに大きく依存している。
さらに、既存のアプローチは、既存のデータセット内の手動の監視信号量によって制限される。
上記の課題に対処するため, 歴史的ターンの実際の影響に基づいて, 文脈決定型クエリ再構成と監視信号の自動マイニングという2つのアイデアを取り入れた, 歴史認識型会話用Dense Retrieval (HAConvDR) システムを提案する。
2つの公開対話型検索データセットに関する実験は、特にトピックシフトとの長い会話において、haconvdrの履歴モデリング能力の向上を示している。
関連論文リスト
- ProCIS: A Benchmark for Proactive Retrieval in Conversations [21.23826888841565]
本稿では,280万件以上の会話からなるプロアクティブな文書検索のための大規模データセットを提案する。
クラウドソーシング実験を行い、高品質で比較的完全な妥当性判定を行う。
また、各文書に関連する会話部分に関するアノテーションを収集し、前向きな検索システムの評価を可能にする。
論文 参考訳(メタデータ) (2024-05-10T13:11:07Z) - Social Commonsense-Guided Search Query Generation for Open-Domain
Knowledge-Powered Conversations [66.16863141262506]
本稿では,ソーシャルコモンセンスによってガイドされたインターネット検索クエリ生成に焦点を当てた新しいアプローチを提案する。
提案フレームワークは,トピックトラッキング,コモンセンス応答生成,命令駆動クエリ生成を統合することで,受動的ユーザインタラクションに対処する。
論文 参考訳(メタデータ) (2023-10-22T16:14:56Z) - History-Aware Hierarchical Transformer for Multi-session Open-domain
Dialogue System [59.78425104243993]
マルチセッションオープンドメイン対話のための履歴認識階層変換器(HAHT)を提案する。
HAHTは歴史会話の長期記憶を維持し、歴史情報を利用して現在の会話状況を理解する。
大規模マルチセッション会話データセットの実験結果は,提案したHAHTモデルがベースラインモデルより一貫して優れていることを示唆している。
論文 参考訳(メタデータ) (2023-02-02T06:54:33Z) - End-to-end Spoken Conversational Question Answering: Task, Dataset and
Model [92.18621726802726]
音声による質問応答では、システムは関連する音声書き起こしの中に連続したテキストスパンからの質問に答えるように設計されている。
本稿では,複雑な対話フローをモデル化することを目的とした音声対話型質問応答タスク(SCQA)を提案する。
本研究の目的は,音声記録に基づく対話型質問に対処するシステムを構築することであり,情報収集システムによる様々なモダリティからより多くの手がかりを提供する可能性を探ることである。
論文 参考訳(メタデータ) (2022-04-29T17:56:59Z) - BERT-CoQAC: BERT-based Conversational Question Answering in Context [10.811729691130349]
履歴変換をシステム内に組み込むためのBERTという,パブリックに利用可能なプリトレーニング言語モデルに基づくフレームワークを紹介する。
実験の結果,我々のフレームワークはQuACリーダボードの最先端モデルと同等の性能を示した。
論文 参考訳(メタデータ) (2021-04-23T03:05:17Z) - A Graph-guided Multi-round Retrieval Method for Conversational
Open-domain Question Answering [52.041815783025186]
本稿では,会話のターン間の回答間の関係をモデル化するグラフ誘導検索手法を提案する。
また,検索コンテキストが現在の質問理解に与える影響を検討するために,マルチラウンド関連フィードバック手法を導入することを提案する。
論文 参考訳(メタデータ) (2021-04-17T04:39:41Z) - BERT Embeddings Can Track Context in Conversational Search [5.3222282321717955]
我々は,自然な方法で情報検索を支援する対話型検索システムを開発した。
システムは、質問が提示される状況を理解し、会話の現在の状態を追跡し、以前の質問や回答に対する言及を検出する。
論文 参考訳(メタデータ) (2021-04-13T22:02:24Z) - Open-Retrieval Conversational Question Answering [62.11228261293487]
オープン検索型対話型質問応答 (ORConvQA) の設定を導入する。
ORConvQAのエンド・ツー・エンドシステムを構築し,レトリバー,リランカ,およびすべてトランスフォーマーをベースとしたリーダを特徴とする。
論文 参考訳(メタデータ) (2020-05-22T19:39:50Z) - Multi-Stage Conversational Passage Retrieval: An Approach to Fusing Term
Importance Estimation and Neural Query Rewriting [56.268862325167575]
マルチステージアドホックIRシステムにクエリ再構成を組み込んだ会話経路検索(ConvPR)に取り組む。
本稿では,1項の重要度推定と2項のニューラルクエリ書き換えという2つの手法を提案する。
前者に対しては、周波数に基づく信号を用いて会話コンテキストから抽出した重要な用語を用いて会話クエリを拡張する。
後者では,会話クエリを,事前訓練されたシーケンス列列列モデルを用いて,自然な,スタンドアロンの,人間の理解可能なクエリに再構成する。
論文 参考訳(メタデータ) (2020-05-05T14:30:20Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。