Enhancing Document-level Argument Extraction with Definition-augmented Heuristic-driven Prompting for LLMs
- URL: http://arxiv.org/abs/2409.00214v1
- Date: Fri, 30 Aug 2024 19:03:14 GMT
- Title: Enhancing Document-level Argument Extraction with Definition-augmented Heuristic-driven Prompting for LLMs
- Authors: Tongyue Sun, Jiayi Xiao,
- Abstract summary: Event Argument Extraction (EAE) is pivotal for extracting structured information from unstructured text.
We propose a novel Definition-augmented Heuristic-driven Prompting (DHP) method to enhance the performance of Large Language Models (LLMs) in document-level EAE.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event Argument Extraction (EAE) is pivotal for extracting structured information from unstructured text, yet it remains challenging due to the complexity of real-world document-level EAE. We propose a novel Definition-augmented Heuristic-driven Prompting (DHP) method to enhance the performance of Large Language Models (LLMs) in document-level EAE. Our method integrates argument extraction-related definitions and heuristic rules to guide the extraction process, reducing error propagation and improving task accuracy. We also employ the Chain-of-Thought (CoT) method to simulate human reasoning, breaking down complex problems into manageable sub-problems. Experiments have shown that our method achieves a certain improvement in performance over existing prompting methods and few-shot supervised learning on document-level EAE datasets. The DHP method enhances the generalization capability of LLMs and reduces reliance on large annotated datasets, offering a novel research perspective for document-level EAE.
Related papers
- From Exploration to Mastery: Enabling LLMs to Master Tools via Self-Driven Interactions [60.733557487886635]
This paper focuses on bridging the comprehension gap between Large Language Models and external tools.
We propose a novel framework, DRAFT, aimed at Dynamically refining tool documentation.
Extensive experiments on multiple datasets demonstrate that DRAFT's iterative, feedback-based refinement significantly ameliorates documentation quality.
arXiv Detail & Related papers (2024-10-10T17:58:44Z) - Document-Level Event Extraction with Definition-Driven ICL [0.0]
We propose an optimization strategy called "Definition-driven Document-level Event Extraction (DDEE)"
By adjusting the length of the prompt and enhancing the clarity of prompts, we have significantly improved the event extraction performance of Large Language Models (LLMs)
In addition, the introduction of structured methods and strict limiting conditions has improved the precision of event and argument role extraction.
arXiv Detail & Related papers (2024-08-10T14:24:09Z) - Enhancing Retrieval-Augmented LMs with a Two-stage Consistency Learning Compressor [4.35807211471107]
This work proposes a novel two-stage consistency learning approach for retrieved information compression in retrieval-augmented language models.
The proposed method is empirically validated across multiple datasets, demonstrating notable enhancements in precision and efficiency for question-answering tasks.
arXiv Detail & Related papers (2024-06-04T12:43:23Z) - Decompose, Enrich, and Extract! Schema-aware Event Extraction using LLMs [45.83950260830323]
This work focuses on harnessing Large Language Models for automated Event Extraction.
It introduces a new method to address hallucination by decomposing the task into Event Detection and Event Argument Extraction.
arXiv Detail & Related papers (2024-06-03T06:55:10Z) - LLM-DA: Data Augmentation via Large Language Models for Few-Shot Named
Entity Recognition [67.96794382040547]
$LLM-DA$ is a novel data augmentation technique based on large language models (LLMs) for the few-shot NER task.
Our approach involves employing 14 contextual rewriting strategies, designing entity replacements of the same type, and incorporating noise injection to enhance robustness.
arXiv Detail & Related papers (2024-02-22T14:19:56Z) - Enhancing Large Language Model with Decomposed Reasoning for Emotion
Cause Pair Extraction [13.245873138716044]
Emotion-Cause Pair Extraction (ECPE) involves extracting clause pairs representing emotions and their causes in a document.
Inspired by recent work, we explore leveraging large language model (LLM) to address ECPE task without additional training.
We introduce chain-of-thought to mimic human cognitive process and propose the Decomposed Emotion-Cause Chain (DECC) framework.
arXiv Detail & Related papers (2024-01-31T10:20:01Z) - LLMs Learn Task Heuristics from Demonstrations: A Heuristic-Driven Prompting Strategy for Document-Level Event Argument Extraction [12.673710691468264]
We introduce the Heuristic-Driven Link-of- Analogy (HD-LoA) prompting to address the challenge of example selection.
Inspired by the analogical reasoning of human, we propose the link-of-analogy prompting, which enables LLMs to process new situations.
Experiments show that our method outperforms existing prompting methods and few-shot supervised learning methods on document-level EAE datasets.
arXiv Detail & Related papers (2023-11-11T12:05:01Z) - Improving Open Information Extraction with Large Language Models: A
Study on Demonstration Uncertainty [52.72790059506241]
Open Information Extraction (OIE) task aims at extracting structured facts from unstructured text.
Despite the potential of large language models (LLMs) like ChatGPT as a general task solver, they lag behind state-of-the-art (supervised) methods in OIE tasks.
arXiv Detail & Related papers (2023-09-07T01:35:24Z) - Boosting Event Extraction with Denoised Structure-to-Text Augmentation [52.21703002404442]
Event extraction aims to recognize pre-defined event triggers and arguments from texts.
Recent data augmentation methods often neglect the problem of grammatical incorrectness.
We propose a denoised structure-to-text augmentation framework for event extraction DAEE.
arXiv Detail & Related papers (2023-05-16T16:52:07Z) - SAIS: Supervising and Augmenting Intermediate Steps for Document-Level
Relation Extraction [51.27558374091491]
We propose to explicitly teach the model to capture relevant contexts and entity types by supervising and augmenting intermediate steps (SAIS) for relation extraction.
Based on a broad spectrum of carefully designed tasks, our proposed SAIS method not only extracts relations of better quality due to more effective supervision, but also retrieves the corresponding supporting evidence more accurately.
arXiv Detail & Related papers (2021-09-24T17:37:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.