論文の概要: QTFlow: Quantitative Timing-Sensitive Information Flow for Security-Aware Hardware Design on RTL
- arxiv url: http://arxiv.org/abs/2401.17819v2
- Date: Tue, 6 Feb 2024 17:22:26 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-25 12:08:11.091516
- Title: QTFlow: Quantitative Timing-Sensitive Information Flow for Security-Aware Hardware Design on RTL
- Title(参考訳): QTFlow: RTL上のセキュリティ対応ハードウェア設計のための定量的タイミング感覚情報フロー
- Authors: Lennart M. Reimann, Anshul Prashar, Chiara Ghinami, Rebecca Pelke, Dominik Sisejkovic, Farhad Merchant, Rainer Leupers,
- Abstract要約: 設計段階でのハードウェア情報漏洩を定量化する,タイミングに敏感なフレームワークQTFlowを紹介する。
QTFlowは、タイミングチャネルを自律的に識別し、時間に依存しない分析から生じるすべての偽陽性を減少させる。
- 参考スコア(独自算出の注目度): 0.3679557794795275
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In contemporary Electronic Design Automation (EDA) tools, security often takes a backseat to the primary goals of power, performance, and area optimization. Commonly, the security analysis is conducted by hand, leading to vulnerabilities in the design remaining unnoticed. Security-aware EDA tools assist the designer in the identification and removal of security threats while keeping performance and area in mind. Cutting-edge methods employ information flow analysis to identify inadvertent information leaks in design structures. Current information leakage detection methods use quantitative information flow analysis to quantify the leaks. However, handling sequential circuits poses challenges for state-of-the-art techniques due to their time-agnostic nature, overlooking timing channels, and introducing false positives. To address this, we introduce QTFlow, a timing-sensitive framework for quantifying hardware information leakages during the design phase. Illustrating its effectiveness on open-source benchmarks, QTFlow autonomously identifies timing channels and diminishes all false positives arising from time-agnostic analysis when contrasted with current state-of-the-art techniques.
- Abstract(参考訳): 現代のElectronic Design Automation (EDA) ツールでは、セキュリティはパワー、パフォーマンス、領域最適化の主な目標を後押しすることが多い。
一般的に、セキュリティ分析は手動で行われるため、設計上の脆弱性は気づかないままである。
セキュリティを意識したEDAツールは,パフォーマンスと領域を念頭に置いて,セキュリティ脅威の識別と削除を支援する。
カットエッジ法は、設計構造における意図しない情報漏洩を特定するために、情報フロー解析を用いる。
現在の情報漏洩検出方法は、定量的情報フロー分析を用いて漏洩を定量化する。
しかし、シーケンシャル回路の扱いは、時間に依存しない性質、タイミングチャネルを見渡すこと、偽陽性を導入することなどにより、最先端技術に課題をもたらす。
これを解決するために、設計フェーズ中にハードウェア情報漏洩を定量化する、タイミングに敏感なフレームワークQTFlowを紹介する。
QTFlowはオープンソースベンチマークの有効性を図示し、タイミングチャネルを自律的に識別し、現在の最先端技術と対比した場合に、時間に依存しない分析から生じるすべての偽陽性を低減します。
関連論文リスト
- Digital Twin-Assisted Federated Learning with Blockchain in Multi-tier Computing Systems [67.14406100332671]
産業用 4.0 システムでは、リソース制約のあるエッジデバイスが頻繁にデータ通信を行う。
本稿では,デジタルツイン (DT) とフェデレーション付きデジタルツイン (FL) 方式を提案する。
提案手法の有効性を数値解析により検証した。
論文 参考訳(メタデータ) (2024-11-04T17:48:02Z) - DFEPT: Data Flow Embedding for Enhancing Pre-Trained Model Based Vulnerability Detection [7.802093464108404]
本稿では,脆弱性検出タスクにおける事前学習モデルの性能向上を目的としたデータフロー埋め込み手法を提案する。
具体的には,関数レベルのソースコードからデータフローグラフを解析し,DFGのノード特性として変数のデータ型を使用する。
我々の研究は、DFEPTが事前訓練されたモデルに効果的な脆弱性セマンティック情報を提供し、Devignデータセットで64.97%、Revealデータセットで47.9%のF1スコアを達成できることを示している。
論文 参考訳(メタデータ) (2024-10-24T07:05:07Z) - Underwater Object Detection in the Era of Artificial Intelligence: Current, Challenge, and Future [119.88454942558485]
水中物体検出(UOD)は、水中の画像やビデオ中の物体を識別し、ローカライズすることを目的としている。
近年、人工知能(AI)に基づく手法、特に深層学習法は、UODにおいて有望な性能を示している。
論文 参考訳(メタデータ) (2024-10-08T00:25:33Z) - Divide and Conquer based Symbolic Vulnerability Detection [0.16385815610837165]
本稿では,シンボル実行と制御フローグラフ解析に基づく脆弱性検出手法を提案する。
提案手法では,無関係なプログラム情報を除去するために,分割・分散アルゴリズムを用いる。
論文 参考訳(メタデータ) (2024-09-20T13:09:07Z) - Towards Efficient Verification of Constant-Time Cryptographic
Implementations [5.433710892250037]
一定時間プログラミングの規律は、タイミングサイドチャネル攻撃に対する効果的なソフトウェアベースの対策である。
本研究では, テナント解析の新たな相乗効果と自己構成プログラムの安全性検証に基づく実用的検証手法を提案する。
当社のアプローチはクロスプラットフォームで完全に自動化されたCT-Proverとして実装されている。
論文 参考訳(メタデータ) (2024-02-21T03:39:14Z) - A Flow-based Credibility Metric for Safety-critical Pedestrian Detection [16.663568842153065]
自動走行(AD)における安全の重要性
標準評価スキームは、十分な検出性能を議論するために安全に依存しない指標を利用する。
本稿では,歩行者拘束箱を対象とした新しい信頼性指標であるc-flowを提案する。
論文 参考訳(メタデータ) (2024-02-12T13:30:34Z) - Defining and executing temporal constraints for evaluating engineering
artifact compliance [56.08728135126139]
プロセスコンプライアンスは、実際のエンジニアリング作業が記述されたエンジニアリングプロセスに可能な限り密接に従うことを保証することに焦点を当てます。
これらのプロセスの制約をチェックすることは、依然として大変な作業であり、多くの手作業を必要とし、プロセスの後半にエンジニアにフィードバックを提供する。
関連するエンジニアリングアーティファクト間の時間的制約を,アーティファクトの変更毎に段階的にチェックする,自動制約チェックアプローチを提案する。
論文 参考訳(メタデータ) (2023-12-20T13:26:31Z) - Secure Instruction and Data-Level Information Flow Tracking Model for RISC-V [0.0]
不正アクセス、障害注入、およびプライバシー侵害は、信頼できないアクターによる潜在的な脅威である。
本稿では,実行時セキュリティがシステム完全性を保護するために,IFT(Information Flow Tracking)技術を提案する。
本研究では,ハードウェアベース IFT 技術とゲートレベル IFT (GLIFT) 技術を統合したマルチレベル IFT モデルを提案する。
論文 参考訳(メタデータ) (2023-11-17T02:04:07Z) - Leveraging Traceability to Integrate Safety Analysis Artifacts into the
Software Development Process [51.42800587382228]
安全保証ケース(SAC)は、システムの進化中に維持することが困難である。
本稿では,ソフトウェアトレーサビリティを活用して,関連するシステムアーチファクトを安全解析モデルに接続する手法を提案する。
安全ステークホルダーがシステム変更が安全性に与える影響を分析するのに役立つように、システム変更の合理性を設計する。
論文 参考訳(メタデータ) (2023-07-14T16:03:27Z) - Towards Automated Classification of Attackers' TTPs by combining NLP
with ML Techniques [77.34726150561087]
我々は,NLP(Natural Language Processing)と,研究におけるセキュリティ情報抽出に使用される機械学習技術の評価と比較を行った。
本研究では,攻撃者の戦術や手法に従って非構造化テキストを自動的に分類するデータ処理パイプラインを提案する。
論文 参考訳(メタデータ) (2022-07-18T09:59:21Z) - Safe RAN control: A Symbolic Reinforcement Learning Approach [62.997667081978825]
本稿では,無線アクセスネットワーク(RAN)アプリケーションの安全管理のためのシンボル強化学習(SRL)アーキテクチャを提案する。
我々は、ユーザが所定のセルネットワークトポロジに対して高レベルの論理的安全性仕様を指定できる純粋に自動化された手順を提供する。
ユーザがシステムに意図仕様を設定するのを支援するために開発されたユーザインターフェース(UI)を導入し、提案するエージェントの動作の違いを検査する。
論文 参考訳(メタデータ) (2021-06-03T16:45:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。