Diffusion MRI with Machine Learning
- URL: http://arxiv.org/abs/2402.00019v3
- Date: Thu, 28 Nov 2024 21:05:04 GMT
- Title: Diffusion MRI with Machine Learning
- Authors: Davood Karimi, Simon K. Warfield,
- Abstract summary: Diffusion-weighted magnetic resonance imaging (dMRI) of the brain offers unique capabilities.
Machine learning may be exceptionally suited to tackle some of the difficult tasks in dMRI analysis.
- Score: 4.254099382808598
- License:
- Abstract: \hspace{2mm} Diffusion-weighted magnetic resonance imaging (dMRI) of the brain offers unique capabilities including noninvasive probing of tissue microstructure and structural connectivity. It is widely used for clinical assessment of disease and injury, and for neuroscience research. Analyzing the dMRI data to extract useful information for medical and scientific purposes can be challenging. The dMRI measurements may suffer from strong noise and artifacts, and may exhibit high inter-session and inter-scanner variability in the data, as well as inter-subject heterogeneity in brain structure. Moreover, the relationship between measurements and the phenomena of interest can be highly complex. Recent years have witnessed increasing use of machine learning methods for dMRI analysis. This manuscript aims to assess these efforts, with a focus on methods that have addressed data preprocessing and harmonization, microstructure mapping, tractography, and white matter tract analysis. We study the main findings, strengths, and weaknesses of the existing methods and suggest topics for future research. We find that machine learning may be exceptionally suited to tackle some of the difficult tasks in dMRI analysis. However, for this to happen, several shortcomings of existing methods and critical unresolved issues need to be addressed. There is a pressing need to improve evaluation practices, to increase the availability of rich training datasets and validation benchmarks, as well as model generalizability, reliability, and explainability concerns.
Related papers
- ContextMRI: Enhancing Compressed Sensing MRI through Metadata Conditioning [51.26601171361753]
We propose ContextMRI, a text-conditioned diffusion model for MRI that integrates granular metadata into the reconstruction process.
We show that increasing the fidelity of metadata, ranging from slice location and contrast to patient age, sex, and pathology, systematically boosts reconstruction performance.
arXiv Detail & Related papers (2025-01-08T05:15:43Z) - Unsupervised dMRI Artifact Detection via Angular Resolution Enhancement and Cycle Consistency Learning [45.3610312584439]
Diffusion magnetic resonance imaging (dMRI) is a crucial technique in neuroimaging studies, allowing for the non-invasive probing of the underlying structures of brain tissues.
Clinical dMRI data is susceptible to various artifacts during acquisition, which can lead to unreliable subsequent analyses.
We propose a novel unsupervised deep learning framework called $textbfU$n $textbfd$MRI $textbfA$rtifact $textbfD$etection via $textbfA$ngular Resolution Enhancement and $textbfC$ycle
arXiv Detail & Related papers (2024-09-24T08:56:10Z) - ACTION: Augmentation and Computation Toolbox for Brain Network Analysis with Functional MRI [28.639321546348654]
Action is a Python-based and cross-platform toolbox for fMRI analysis.
It enables automatic fMRI augmentation, covering blood-oxygen-level-dependent (BOLD) signal augmentation and brain network augmentation.
It supports constructing deep learning models, which leverage large-scale auxiliary unlabeled data.
arXiv Detail & Related papers (2024-05-10T01:45:09Z) - Source-Free Collaborative Domain Adaptation via Multi-Perspective
Feature Enrichment for Functional MRI Analysis [55.03872260158717]
Resting-state MRI functional (rs-fMRI) is increasingly employed in multi-site research to aid neurological disorder analysis.
Many methods have been proposed to reduce fMRI heterogeneity between source and target domains.
But acquiring source data is challenging due to concerns and/or data storage burdens in multi-site studies.
We design a source-free collaborative domain adaptation framework for fMRI analysis, where only a pretrained source model and unlabeled target data are accessible.
arXiv Detail & Related papers (2023-08-24T01:30:18Z) - K-Space-Aware Cross-Modality Score for Synthesized Neuroimage Quality
Assessment [71.27193056354741]
The problem of how to assess cross-modality medical image synthesis has been largely unexplored.
We propose a new metric K-CROSS to spur progress on this challenging problem.
K-CROSS uses a pre-trained multi-modality segmentation network to predict the lesion location.
arXiv Detail & Related papers (2023-07-10T01:26:48Z) - Incomplete Multimodal Learning for Complex Brain Disorders Prediction [65.95783479249745]
We propose a new incomplete multimodal data integration approach that employs transformers and generative adversarial networks.
We apply our new method to predict cognitive degeneration and disease outcomes using the multimodal imaging genetic data from Alzheimer's Disease Neuroimaging Initiative cohort.
arXiv Detail & Related papers (2023-05-25T16:29:16Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Data and Physics Driven Learning Models for Fast MRI -- Fundamentals and
Methodologies from CNN, GAN to Attention and Transformers [72.047680167969]
This article aims to introduce the deep learning based data driven techniques for fast MRI including convolutional neural network and generative adversarial network based methods.
We will detail the research in coupling physics and data driven models for MRI acceleration.
Finally, we will demonstrate through a few clinical applications, explain the importance of data harmonisation and explainable models for such fast MRI techniques in multicentre and multi-scanner studies.
arXiv Detail & Related papers (2022-04-01T22:48:08Z) - Deep Transfer Learning for Brain Magnetic Resonance Image Multi-class
Classification [0.6117371161379209]
We have developed a framework that uses Deep Transfer Learning to perform a multi-classification of tumors in the brain MRI images.
Using the novel dataset and two publicly available MRI brain datasets, this proposed approach attained a classification accuracy of 86.40%.
Results of our experiments significantly demonstrate our proposed framework for transfer learning is a potential and effective method for brain tumor multi-classification tasks.
arXiv Detail & Related papers (2021-06-14T12:19:27Z) - Incorporating structured assumptions with probabilistic graphical models
in fMRI data analysis [5.23143327587266]
We review a few recently developed algorithms in various domains of fMRI research.
These algorithms all tackle the challenges in fMRI similarly.
We advocate wider adoption of explicit model construction in cognitive neuroscience.
arXiv Detail & Related papers (2020-05-11T06:32:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.