論文の概要: Diverse Explanations from Data-driven and Domain-driven Perspectives for
Machine Learning Models
- arxiv url: http://arxiv.org/abs/2402.00347v1
- Date: Thu, 1 Feb 2024 05:28:28 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 16:25:33.294020
- Title: Diverse Explanations from Data-driven and Domain-driven Perspectives for
Machine Learning Models
- Title(参考訳): 機械学習モデルのためのデータ駆動およびドメイン駆動の観点からの多様な説明
- Authors: Sichao Li and Amanda Barnard
- Abstract要約: 機械学習モデルの解説は特に化学、生物学、物理学などの科学分野において重要である。
本稿では,機械学習モデルや,特定のニーズやニーズ,目的を持ったさまざまな利害関係者に対して,正確で誤解を招くような不整合性への注意を喚起する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Explanations of machine learning models are important, especially in
scientific areas such as chemistry, biology, and physics, where they guide
future laboratory experiments and resource requirements. These explanations can
be derived from well-trained machine learning models (data-driven perspective)
or specific domain knowledge (domain-driven perspective). However, there exist
inconsistencies between these perspectives due to accurate yet misleading
machine learning models and various stakeholders with specific needs, wants, or
aims. This paper calls attention to these inconsistencies and suggests a way to
find an accurate model with expected explanations that reinforce physical laws
and meet stakeholders' requirements from a set of equally-good models, also
known as Rashomon sets. Our goal is to foster a comprehensive understanding of
these inconsistencies and ultimately contribute to the integration of
eXplainable Artificial Intelligence (XAI) into scientific domains.
- Abstract(参考訳): 機械学習モデルの解説は特に化学、生物学、物理学などの科学分野において重要であり、将来の実験実験と資源要求を導く。
これらの説明は、よく訓練された機械学習モデル(データ駆動の視点)や特定のドメイン知識(ドメイン駆動の視点)から導き出すことができる。
しかし、正確だが誤解を招く機械学習モデルと、特定のニーズ、願望、目的を持つ様々な利害関係者によって、これらの視点には矛盾がある。
本稿では、これらの矛盾に注意を向け、物理法則を補強し、利害関係者の要求を等質なラーショモン集合(rashomon set)から満たした正確なモデルを見つける方法を提案する。
我々の目標は、これらの矛盾を包括的に理解し、最終的に科学領域へのeXplainable Artificial Intelligence(XAI)の統合に寄与することです。
関連論文リスト
- Probing the limitations of multimodal language models for chemistry and materials research [3.422786943576035]
実世界の化学や材料科学のタスクを視覚言語モデルがどのように扱うかを評価するためのベンチマークであるMaCBenchを紹介する。
これらのシステムは、基本的な知覚タスクにおいて有望な能力を示すが、空間的推論、クロスモーダル情報合成、論理的推論の基本的な限界を示す。
私たちの洞察は、化学や材料科学以外にも重要な意味を持ち、信頼性の高いマルチモーダルAI科学アシスタントを開発するには、適切なトレーニングデータとそれらのモデルをトレーニングするためのアプローチのキュレーションの進歩が必要であることを示唆している。
論文 参考訳(メタデータ) (2024-11-25T21:51:45Z) - Improving Molecular Modeling with Geometric GNNs: an Empirical Study [56.52346265722167]
本稿では,異なる標準化手法,(2)グラフ作成戦略,(3)補助的なタスクが性能,拡張性,対称性の強制に与える影響に焦点をあてる。
本研究の目的は,分子モデリングタスクに最適なモデリングコンポーネントの選択を研究者に案内することである。
論文 参考訳(メタデータ) (2024-07-11T09:04:12Z) - A Comprehensive Survey of Scientific Large Language Models and Their Applications in Scientific Discovery [68.48094108571432]
大規模言語モデル(LLM)は、テキストやその他のデータ処理方法に革命をもたらした。
我々は,科学LLM間のクロスフィールドおよびクロスモーダル接続を明らかにすることで,研究ランドスケープのより総合的なビューを提供することを目指している。
論文 参考訳(メタデータ) (2024-06-16T08:03:24Z) - LLM and Simulation as Bilevel Optimizers: A New Paradigm to Advance Physical Scientific Discovery [141.39722070734737]
本稿では,大規模言語モデルの知識駆動型抽象推論能力をシミュレーションの計算力で強化することを提案する。
本稿では,2段階最適化フレームワークであるSGA(Scientific Generative Agent)を紹介する。
法発見と分子設計における枠組みの有効性を実証するための実験を行った。
論文 参考訳(メタデータ) (2024-05-16T03:04:10Z) - Opportunities for machine learning in scientific discovery [16.526872562935463]
我々は、科学コミュニティが科学的な発見を達成するために機械学習技術をどのように活用できるかをレビューする。
課題は残るが、MLの原則的利用は基本的な科学的発見のための新たな道を開く。
論文 参考訳(メタデータ) (2024-05-07T09:58:02Z) - Understanding Biology in the Age of Artificial Intelligence [4.299566787216408]
現代生命科学の研究は、生物システムをモデル化するための人工知能のアプローチにますます依存している。
機械学習(ML)モデルは、大規模で複雑なデータセットのパターンを特定するのに有用であるが、生物学におけるその広範な応用は、従来の科学的調査方法から大きく逸脱している。
ここでは,生物現象をモデル化し,科学的知識を進化させるために,MLシステムの設計と応用を導く一般的な原理を同定する。
論文 参考訳(メタデータ) (2024-03-06T23:20:34Z) - Scientific Large Language Models: A Survey on Biological & Chemical Domains [47.97810890521825]
大規模言語モデル(LLM)は、自然言語理解の強化において、変革的な力として現れてきた。
LLMの応用は従来の言語境界を超えて、様々な科学分野で開発された専門的な言語システムを含んでいる。
AI for Science(AI for Science)のコミュニティで急成長している分野として、科学LLMは包括的な探査を義務付けている。
論文 参考訳(メタデータ) (2024-01-26T05:33:34Z) - SciInstruct: a Self-Reflective Instruction Annotated Dataset for Training Scientific Language Models [57.96527452844273]
我々はSciInstructを紹介した。SciInstructは、大学レベルの科学的推論が可能な科学言語モデルを訓練するための科学指導スイートである。
我々は、物理学、化学、数学、公式な証明を含む多種多様な高品質なデータセットをキュレートした。
SciInstructの有効性を検証するため、SciInstruct、すなわちChatGLM3(6Bと32B)、Llama3-8B-Instruct、Mistral-7B: MetaMathを用いて言語モデルを微調整した。
論文 参考訳(メタデータ) (2024-01-15T20:22:21Z) - Interpretable and Explainable Machine Learning for Materials Science and
Chemistry [2.2175470459999636]
材料科学・化学における解釈可能性および説明可能性技術の応用を概説する。
材料科学における機械学習の解釈に関する様々な課題について論じる。
我々は、物質科学や化学問題における解釈可能性に恩恵をもたらす可能性のある、他の分野における多くのエキサイティングな展開を紹介します。
論文 参考訳(メタデータ) (2021-11-01T15:40:36Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
ナノスケールバイオメディカルエンジニアリングにおける機械学習の利用に関する既存の研究について概説する。
ML問題として定式化できる主な課題は、3つの主要なカテゴリに分類される。
提示された方法論のそれぞれについて、その原則、応用、制限に特に重点を置いている。
論文 参考訳(メタデータ) (2020-08-05T15:45:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。