論文の概要: RadDQN: a Deep Q Learning-based Architecture for Finding Time-efficient
Minimum Radiation Exposure Pathway
- arxiv url: http://arxiv.org/abs/2402.00468v1
- Date: Thu, 1 Feb 2024 10:15:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-02 15:35:04.662297
- Title: RadDQN: a Deep Q Learning-based Architecture for Finding Time-efficient
Minimum Radiation Exposure Pathway
- Title(参考訳): RadDQN: 時間効率の最小放射露光経路を見つけるための深層Q学習型アーキテクチャ
- Authors: Biswajit Sadhu, Trijit Sadhu, S. Anand
- Abstract要約: 本稿では,放射線帯における時間効率の低い最小放射露光経路を提供するために,放射線対応報酬関数で動作する深層Q-ラーニングベースアーキテクチャ(RadDQN)を提案する。
本研究では,訓練中の放射線被曝状態の経時変化に基づいて,調査・利用の程度を微調整する一貫した探索手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Recent advancements in deep reinforcement learning (DRL) techniques have
sparked its multifaceted applications in the automation sector. Managing
complex decision-making problems with DRL encourages its use in the nuclear
industry for tasks such as optimizing radiation exposure to the personnel
during normal operating conditions and potential accidental scenarios. However,
the lack of efficient reward function and effective exploration strategy
thwarted its implementation in the development of radiation-aware autonomous
unmanned aerial vehicle (UAV) for achieving maximum radiation protection. Here,
in this article, we address these intriguing issues and introduce a deep
Q-learning based architecture (RadDQN) that operates on a radiation-aware
reward function to provide time-efficient minimum radiation-exposure pathway in
a radiation zone. We propose a set of unique exploration strategies that
fine-tune the extent of exploration and exploitation based on the state-wise
variation in radiation exposure during training. Further, we benchmark the
predicted path with grid-based deterministic method. We demonstrate that the
formulated reward function in conjugation with adequate exploration strategy is
effective in handling several scenarios with drastically different radiation
field distributions. When compared to vanilla DQN, our model achieves a
superior convergence rate and higher training stability.
- Abstract(参考訳): 近年の深部強化学習(DRL)技術の進歩は、自動化分野における多面的応用の火花となった。
DRLによる複雑な意思決定問題を管理することは、通常の運用条件下での放射線被曝の最適化や潜在的な事故シナリオといったタスクに原子力産業での利用を促進する。
しかし、効率的な報酬関数の欠如と効果的な探査戦略は、最大放射線防護を達成するための放射線対応無人航空機(UAV)の開発を妨げた。
本稿では,これらの興味深い問題に対処し,放射線帯における時間効率の最小限の放射線露光経路を提供する放射線検知報奨機能を備えた深層q-learning based architecture (raddqn)を提案する。
本研究では,訓練中の放射線被曝の状態的変動に基づいて,探索と搾取の程度を微調整するユニークな探索戦略を提案する。
さらに,予測経路をグリッドベース決定論的手法でベンチマークする。
適切な探索戦略を伴う共役における報酬関数は,放射場分布が著しく異なる複数のシナリオを扱うのに有効であることを実証する。
バニラdqnと比較すると,本モデルは高い収束率と高いトレーニング安定性を実現する。
関連論文リスト
- MaxInfoRL: Boosting exploration in reinforcement learning through information gain maximization [91.80034860399677]
強化学習アルゴリズムは、現在のベスト戦略の活用と、より高い報酬につながる可能性のある新しいオプションの探索のバランスを図ることを目的としている。
我々は本質的な探索と外生的な探索のバランスをとるためのフレームワークMaxInfoRLを紹介する。
提案手法は,マルチアームバンディットの簡易な設定において,サブリニアな後悔を実現するものである。
論文 参考訳(メタデータ) (2024-12-16T18:59:53Z) - Diffusion-Based Offline RL for Improved Decision-Making in Augmented ARC Task [10.046325073900297]
SOLAR(Abstraction and Reasoning)のための拡張オフラインRLデータセットを提案する。
SOLARは、十分な経験データを提供することで、オフラインのRLメソッドの適用を可能にする。
本実験は, 簡単なARCタスクにおけるオフラインRL手法の有効性を実証する。
論文 参考訳(メタデータ) (2024-10-15T06:48:27Z) - Random Latent Exploration for Deep Reinforcement Learning [71.88709402926415]
本稿ではRLE(Random Latent Exploration)と呼ばれる新しい探査手法を紹介する。
RLEはボーナスベースとノイズベース(ディープRLを効果的に探索するための2つの一般的なアプローチ)の強みを組み合わせたものである。
AtariとIsaacGymのベンチマークで評価し、RLEは他の手法よりも全タスクの総合スコアが高いことを示した。
論文 参考訳(メタデータ) (2024-07-18T17:55:22Z) - Aquatic Navigation: A Challenging Benchmark for Deep Reinforcement Learning [53.3760591018817]
ゲームエンジンとDeep Reinforcement Learningの統合の最近の進歩を利用して,水上ナビゲーションのための新しいベンチマーク環境を提案する。
具体的には、最も広く受け入れられているアルゴリズムの一つであるPPOに着目し、先進的なトレーニング手法を提案する。
実験により,これらの成分をうまく組み合わせることで,有望な結果が得られることが示された。
論文 参考訳(メタデータ) (2024-05-30T23:20:23Z) - AI-Based Energy Transportation Safety: Pipeline Radial Threat Estimation
Using Intelligent Sensing System [52.93806509364342]
本稿では,分散光ファイバーセンシング技術に基づくエネルギーパイプラインの放射状脅威推定手法を提案する。
本稿では,包括的信号特徴抽出のための連続的マルチビュー・マルチドメイン機能融合手法を提案する。
本研究では,事前学習モデルによる伝達学習の概念を取り入れ,認識精度と学習効率の両立を図る。
論文 参考訳(メタデータ) (2023-12-18T12:37:35Z) - Burnt area extraction from high-resolution satellite images based on
anomaly detection [1.8843687952462738]
本稿では,ベクトル量子化変分オートエンコーダ(VQ-VAE)を用いて,非教師なし領域抽出を行う。
VQ-VAEをエンド・ツー・エンドのフレームワークに統合し、専用の植生、水、明るさ指数を用いて、集中的な後処理を行う。
論文 参考訳(メタデータ) (2023-08-25T13:25:27Z) - Deep Learning Methods for Daily Wildfire Danger Forecasting [6.763972119525753]
森林火災の予測は、災害リスクの低減と環境の持続可能性にとって最重要課題である。
我々は、過去10年間の歴史的地球観測データを用いて、日々の火災危険予測を機械学習タスクとしてアプローチし、火災の危険を予測する。
我々のDLベースの実証概念は、既存の運用ソリューションよりもはるかに高解像度で、全国規模の1日あたりの火災危険マップを提供する。
論文 参考訳(メタデータ) (2021-11-04T10:39:12Z) - Adaptive Informative Path Planning Using Deep Reinforcement Learning for
UAV-based Active Sensing [2.6519061087638014]
深層強化学習(RL)に基づく情報経路計画のための新しい手法を提案する。
本手法は,モンテカルロ木探索とオフライン学習ニューラルネットワークを組み合わせた情報知覚行動の予測を行う。
ミッション中にトレーニングされたネットワークをデプロイすることにより、限られた計算資源を持つ物理プラットフォーム上で、サンプル効率の良いオンラインリプランニングが可能になる。
論文 参考訳(メタデータ) (2021-09-28T09:00:55Z) - Path Design and Resource Management for NOMA enhanced Indoor Intelligent
Robots [58.980293789967575]
通信可能な屋内知的ロボット(IR)サービスフレームワークを提案する。
室内レイアウトとチャネル状態を決定論的に記述できるレゴモデリング手法が提案されている。
調査対象の無線マップは、強化学習エージェントを訓練するための仮想環境として呼び出される。
論文 参考訳(メタデータ) (2020-11-23T21:45:01Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。