論文の概要: Taming Uncertainty in Sparse-view Generalizable NeRF via Indirect
Diffusion Guidance
- arxiv url: http://arxiv.org/abs/2402.01217v1
- Date: Fri, 2 Feb 2024 08:39:51 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-05 16:28:48.010939
- Title: Taming Uncertainty in Sparse-view Generalizable NeRF via Indirect
Diffusion Guidance
- Title(参考訳): 間接拡散誘導によるスパースビュー一般化可能なNeRFの処理不確かさ
- Authors: Yaokun Li, Chao Gou, Guang Tan
- Abstract要約: 一般化可能なNeRF(Gen-NeRF)は、しばしば不確実性に満ちたスパース入力を持つ未観測領域でぼやけたアーティファクトを生成する。
本稿では, 間接拡散誘導型NeRFフレームワークであるID-NeRFを提案し, 生成的観点からの不確実性に対処する。
- 参考スコア(独自算出の注目度): 13.006310342461354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Neural Radiance Fields (NeRF) have demonstrated effectiveness in synthesizing
novel views. However, their reliance on dense inputs and scene-specific
optimization has limited their broader applicability. Generalizable NeRFs
(Gen-NeRF), while intended to address this, often produce blurring artifacts in
unobserved regions with sparse inputs, which are full of uncertainty. In this
paper, we aim to diminish the uncertainty in Gen-NeRF for plausible renderings.
We assume that NeRF's inability to effectively mitigate this uncertainty stems
from its inherent lack of generative capacity. Therefore, we innovatively
propose an Indirect Diffusion-guided NeRF framework, termed ID-NeRF, to address
this uncertainty from a generative perspective by leveraging a distilled
diffusion prior as guidance. Specifically, to avoid model confusion caused by
directly regularizing with inconsistent samplings as in previous methods, our
approach introduces a strategy to indirectly inject the inherently missing
imagination into the learned implicit function through a diffusion-guided
latent space. Empirical evaluation across various benchmarks demonstrates the
superior performance of our approach in handling uncertainty with sparse
inputs.
- Abstract(参考訳): ニューラルラジアンス場(NeRF)は,新規な視点の合成に有効であることを示す。
しかし、その濃密な入力とシーン固有の最適化への依存は、その広い適用範囲を制限している。
一般化可能なNeRF(Gen-NeRF)は、この問題に対処することを目的としているが、しばしば不確実性に満ちたスパース入力を持つ未観測領域でぼやけたアーティファクトを生成する。
本稿では,Gen-NeRFの不確実性を低減することを目的としている。
我々は、この不確実性を効果的に緩和できないNeRFは、生成能力の欠如に起因すると仮定する。
そこで我々は, 間接拡散誘導型NeRFフレームワークであるID-NeRFを革新的に提案し, 誘導に先立って蒸留拡散を利用することにより, 生成的視点からこの不確実性に対処する。
具体的には, 先行手法のように不整合サンプリングと直接的に規則化することで生じるモデルの混乱を避けるために, 拡散誘導潜在空間を通して学習された暗黙的関数に本質的に欠けている想像力を間接的に注入する手法を導入する。
各種ベンチマークによる実証評価は,スパース入力による不確実性処理において,提案手法の優れた性能を示す。
関連論文リスト
- OPONeRF: One-Point-One NeRF for Robust Neural Rendering [70.56874833759241]
そこで我々は,ロバストなシーンレンダリングのためのOne-Point-One NeRF (OPONeRF) フレームワークを提案する。
物体の動き、光の変化、データ汚染といった小さなが予測不可能な摂動は、現実の3Dシーンに広く存在している。
実験の結果,OPONeRFは各種評価指標において最先端のNeRFよりも優れていた。
論文 参考訳(メタデータ) (2024-09-30T07:49:30Z) - Instant Uncertainty Calibration of NeRFs Using a Meta-calibrator [60.47106421809998]
我々は,1つの前方パスを持つNeRFに対して不確実な校正を行うメタ校正器の概念を導入する。
メタキャリブレータは、見えないシーンを一般化し、NeRFの良好な校正と最先端の不確実性を実現できることを示す。
論文 参考訳(メタデータ) (2023-12-04T21:29:31Z) - FG-NeRF: Flow-GAN based Probabilistic Neural Radiance Field for
Independence-Assumption-Free Uncertainty Estimation [28.899779240902703]
本研究では,Flow-GANに基づく独立推定自由確率的ニューラル放射場を提案する。
本手法は, 対向学習の生成能力と正規化フローの強力な表現性を組み合わせることで, シーンの密度-放射分布を明示的にモデル化する。
提案手法は,より低いレンダリング誤差と,合成データセットと実世界のデータセットの信頼性の高い不確実性を予測し,最先端の性能を示す。
論文 参考訳(メタデータ) (2023-09-28T12:05:08Z) - SafeDiffuser: Safe Planning with Diffusion Probabilistic Models [97.80042457099718]
拡散モデルに基づくアプローチは、データ駆動計画において有望であるが、安全保証はない。
我々は,拡散確率モデルが仕様を満たすことを保証するために,SafeDiffuserと呼ばれる新しい手法を提案する。
提案手法は,迷路経路の生成,足歩行ロボットの移動,空間操作など,安全な計画作業の一連のテストを行う。
論文 参考訳(メタデータ) (2023-05-31T19:38:12Z) - DiffusionAD: Norm-guided One-step Denoising Diffusion for Anomaly
Detection [89.49600182243306]
我々は拡散モデルを用いて再構成過程をノイズ・ツー・ノームパラダイムに再構成する。
本稿では,拡散モデルにおける従来の反復的復調よりもはるかに高速な高速な一段階復調パラダイムを提案する。
セグメント化サブネットワークは、入力画像とその異常のない復元を用いて画素レベルの異常スコアを予測する。
論文 参考訳(メタデータ) (2023-03-15T16:14:06Z) - Self-NeRF: A Self-Training Pipeline for Few-Shot Neural Radiance Fields [17.725937326348994]
入力ビューの少ない放射場を反復的に洗練する自己進化型NeRFであるSelf-NeRFを提案する。
各イテレーションでは、予測された色や、前回のイテレーションからモデルが生成した歪んだピクセルで、目に見えないビューをラベル付けします。
これらの拡張された擬似ビューは、NeRFの性能を低下させる色やワープアーティファクトのインプレクションによって悩まされる。
論文 参考訳(メタデータ) (2023-03-10T08:22:36Z) - Anti-Exploration by Random Network Distillation [63.04360288089277]
ランダムネットワーク蒸留 (RND) の条件付けは, 不確実性推定器として用いるのに十分な識別性がないことを示す。
この制限は、FiLM(Feature-wise Linear Modulation)に基づく条件付けによって回避できることを示す。
D4RLベンチマークで評価したところ、アンサンブルベースの手法に匹敵する性能を達成でき、アンサンブルのない手法よりも広いマージンで性能を向上できることがわかった。
論文 参考訳(メタデータ) (2023-01-31T13:18:33Z) - Density-aware NeRF Ensembles: Quantifying Predictive Uncertainty in
Neural Radiance Fields [7.380217868660371]
ニューラルレイディアンス場(NeRF)におけるモデル不確かさを効果的に定量化することを示す。
次世代のビュー選択やモデル改良にNeRFの不確かさを活用できることを実証する。
論文 参考訳(メタデータ) (2022-09-19T02:28:33Z) - Conditional-Flow NeRF: Accurate 3D Modelling with Reliable Uncertainty
Quantification [44.598503284186336]
Conditional-Flow NeRF (CF-NeRF) は、不確実な定量化をNeRFベースのアプローチに組み込む新しい確率的フレームワークである。
CF-NeRFは、モデル化されたシーンに関連する不確実性を定量化するために使用される全ての可能な放射場モデリング上の分布を学習する。
論文 参考訳(メタデータ) (2022-03-18T23:26:20Z) - Stochastic Neural Radiance Fields:Quantifying Uncertainty in Implicit 3D
Representations [19.6329380710514]
不確かさの定量化は機械学習における長年の問題である。
本稿では,このシーンをモデル化するすべての可能なフィールドの確率分布を学習する標準NeRFの一般化であるNeural Radiance Fields (S-NeRF)を提案する。
S-NeRFは、他の領域における不確実性推定のために提案された一般的なアプローチよりも、より信頼性の高い予測と信頼性値を提供することができる。
論文 参考訳(メタデータ) (2021-09-05T16:56:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。