論文の概要: Learning Structure-Aware Representations of Dependent Types
- arxiv url: http://arxiv.org/abs/2402.02104v2
- Date: Wed, 30 Oct 2024 12:40:30 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-31 13:57:17.806140
- Title: Learning Structure-Aware Representations of Dependent Types
- Title(参考訳): 依存型の構造認識表現を学習する
- Authors: Konstantinos Kogkalidis, Orestis Melkonian, Jean-Philippe Bernardy,
- Abstract要約: Agdaは依存型プログラミング言語であり、証明アシスタントである。
本稿では,Agdaエコシステムを機械学習領域に拡張する。
我々は,Agdaプログラムプロテクションの新しいデータセットを導入し,リリースする。
- 参考スコア(独自算出の注目度): 3.7794090250290187
- License:
- Abstract: Agda is a dependently-typed programming language and a proof assistant, pivotal in proof formalization and programming language theory. This paper extends the Agda ecosystem into machine learning territory, and, vice versa, makes Agda-related resources available to machine learning practitioners. We introduce and release a novel dataset of Agda program-proofs that is elaborate and extensive enough to support various machine learning applications -- the first of its kind. Leveraging the dataset's ultra-high resolution, which details proof states at the sub-type level, we propose a novel neural architecture targeted at faithfully representing dependently-typed programs on the basis of structural rather than nominal principles. We instantiate and evaluate our architecture in a premise selection setup, where it achieves promising initial results, surpassing strong baselines.
- Abstract(参考訳): Agdaは、依存型プログラミング言語であり、証明アシスタントであり、証明形式化とプログラミング言語理論において重要な役割を担っている。
本稿では、Agdaエコシステムを機械学習領域に拡張し、Agda関連のリソースを機械学習実践者に提供します。
私たちは、さまざまな機械学習アプリケーションをサポートするのに十分な精巧で広範なAgdaプログラムプロテクションのデータセットを導入してリリースします。
データセットの超高分解能を利用して、サブタイプレベルでの証明状態を詳述し、基本原理ではなく構造原理に基づいて依存型プログラムを忠実に表現することを目的とした、新しいニューラルアーキテクチャを提案する。
アーキテクチャを前提選択設定でインスタンス化し、評価し、強力なベースラインを超える有望な初期結果を達成する。
関連論文リスト
- Deep Learning and Machine Learning -- Object Detection and Semantic Segmentation: From Theory to Applications [17.571124565519263]
本は、機械学習とディープラーニングにおける最先端の進歩をカバーしている。
畳み込みニューラルネットワーク(CNN)、YOLOアーキテクチャ、DeTRのようなトランスフォーマーベースのアプローチに重点を置いている。
また、人工知能(AI)技術と拡張オブジェクト検出のための大規模言語モデルの統合も検討している。
論文 参考訳(メタデータ) (2024-10-21T02:10:49Z) - Reducing Diversity to Generate Hierarchical Archetypes [2.5069344340760713]
構築的アーキタイプの階層を自動的に生成するプリミティブベースのフレームワークを提案する。
数学的定義と証明により,本フレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2024-09-27T11:06:59Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
人工知能(AI)エージェント作成の鍵となる方法は強化学習(RL)である
本稿では,構造化推論をAIエージェントのポリシーに統合し,学習するための一般的なフレームワークモデルを提案する。
論文 参考訳(メタデータ) (2023-12-22T17:57:57Z) - Retrieval-Enhanced Machine Learning [110.5237983180089]
本稿では,いくつかの既存モデルを含む汎用的な検索強化機械学習フレームワークについて述べる。
REMLは情報検索の慣例に挑戦し、最適化を含む中核領域における新たな進歩の機会を提示している。
REMLリサーチアジェンダは、情報アクセス研究の新しいスタイルの基礎を築き、機械学習と人工知能の進歩への道を開く。
論文 参考訳(メタデータ) (2022-05-02T21:42:45Z) - Unified Instance and Knowledge Alignment Pretraining for Aspect-based
Sentiment Analysis [96.53859361560505]
Aspect-based Sentiment Analysis (ABSA) は、ある側面に対する感情の極性を決定することを目的としている。
事前トレーニングと下流ABSAデータセットの間には、常に深刻なドメインシフトが存在する。
我々は,バニラ・プレトレイン・ファインチューンパイプラインにアライメント事前訓練フレームワークを導入する。
論文 参考訳(メタデータ) (2021-10-26T04:03:45Z) - Incorporating Linguistic Knowledge for Abstractive Multi-document
Summarization [20.572283625521784]
ニューラルネットワークに基づく抽象的多文書要約(MDS)モデルを開発した。
依存関係情報を言語誘導型注意機構に処理する。
言語信号の助けを借りて、文レベルの関係を正しく捉えることができる。
論文 参考訳(メタデータ) (2021-09-23T08:13:35Z) - Structure-Aware Feature Generation for Zero-Shot Learning [108.76968151682621]
潜在空間と生成ネットワークの両方を学習する際の位相構造を考慮し,SA-GANと呼ばれる新しい構造認識特徴生成手法を提案する。
本手法は,未確認クラスの一般化能力を大幅に向上させ,分類性能を向上させる。
論文 参考訳(メタデータ) (2021-08-16T11:52:08Z) - Iterated learning for emergent systematicity in VQA [3.977144385787228]
ニューラルモジュールネットワークは構成性に対するアーキテクチャ上のバイアスを持っている。
レイアウトとモジュールを共同学習する場合、構成性は自動的に発生せず、適切な構造を示すレイアウトの出現には明示的な圧力が必要です。
本研究では,自然における構成言語の出現に関する認知科学理論である反復学習を用いてこの問題に対処することを提案する。
論文 参考訳(メタデータ) (2021-05-03T18:44:06Z) - Few-Shot Named Entity Recognition: A Comprehensive Study [92.40991050806544]
マルチショット設定のモデル一般化能力を向上させるための3つの手法を検討する。
ラベル付きデータの比率の異なる10の公開nerデータセットについて経験的比較を行う。
マルチショットとトレーニングフリーの両方の設定で最新の結果を作成します。
論文 参考訳(メタデータ) (2020-12-29T23:43:16Z) - Exploring Probabilistic Soft Logic as a framework for integrating
top-down and bottom-up processing of language in a task context [0.6091702876917279]
このアーキテクチャは既存のNLPコンポーネントを統合し、8段階の言語モデリングの候補分析を生成する。
このアーキテクチャは、形式レベルでの表現形式としてUniversal Dependencies (UD) と、学習者回答のセマンティックな分析を表現するための抽象的意味表現 (AMR) に基づいて構築されている。
論文 参考訳(メタデータ) (2020-04-15T11:00:07Z) - A Dependency Syntactic Knowledge Augmented Interactive Architecture for
End-to-End Aspect-based Sentiment Analysis [73.74885246830611]
エンドツーエンドABSAのためのマルチタスク学習を用いた対話型アーキテクチャを新たに提案する。
このモデルは、よく設計された依存性関係埋め込みグラフ畳み込みネットワーク(DreGcn)を活用することで、構文知識(依存性関係と型)を完全に活用することができる。
3つのベンチマークデータセットの大規模な実験結果から,本手法の有効性が示された。
論文 参考訳(メタデータ) (2020-04-04T14:59:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。