論文の概要: XTSFormer: Cross-Temporal-Scale Transformer for Irregular Time Event
Prediction
- arxiv url: http://arxiv.org/abs/2402.02258v1
- Date: Sat, 3 Feb 2024 20:33:39 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-06 21:02:16.408483
- Title: XTSFormer: Cross-Temporal-Scale Transformer for Irregular Time Event
Prediction
- Title(参考訳): XTSFormer: 時間イベント予測のためのクロステンポラリスケールトランス
- Authors: Tingsong Xiao, Zelin Xu, Wenchong He, Jim Su, Yupu Zhang, Raymond
Opoku, Ronald Ison, Jason Petho, Jiang Bian, Patrick Tighe, Parisa Rashidi,
Zhe Jiang
- Abstract要約: イベント予測は、過去のイベントシーケンスに基づいて、将来のイベントの時間とタイプを予測することを目的としている。
その重要性にもかかわらず、連続するイベント間の時間間隔の不規則性、サイクルの存在、周期性、マルチスケールのイベント相互作用など、いくつかの課題が存在する。
- 参考スコア(独自算出の注目度): 9.240950990926796
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Event prediction aims to forecast the time and type of a future event based
on a historical event sequence. Despite its significance, several challenges
exist, including the irregularity of time intervals between consecutive events,
the existence of cycles, periodicity, and multi-scale event interactions, as
well as the high computational costs for long event sequences. Existing neural
temporal point processes (TPPs) methods do not capture the multi-scale nature
of event interactions, which is common in many real-world applications such as
clinical event data. To address these issues, we propose the
cross-temporal-scale transformer (XTSFormer), designed specifically for
irregularly timed event data. Our model comprises two vital components: a novel
Feature-based Cycle-aware Time Positional Encoding (FCPE) that adeptly captures
the cyclical nature of time, and a hierarchical multi-scale temporal attention
mechanism. These scales are determined by a bottom-up clustering algorithm.
Extensive experiments on several real-world datasets show that our XTSFormer
outperforms several baseline methods in prediction performance.
- Abstract(参考訳): イベント予測は、過去のイベントシーケンスに基づいて、将来のイベントの時間とタイプを予測することを目的としている。
その重要性にもかかわらず、連続するイベント間の時間間隔の不規則性、周期性、複数スケールのイベント相互作用の存在、および長いイベントシーケンスに対する高い計算コストなど、いくつかの課題が存在する。
既存のニューラル・テンポラル・ポイント・プロセス(TPP)法は、臨床イベントデータのような現実の多くの応用で一般的なイベント相互作用のマルチスケールの性質を捉えない。
これらの問題に対処するため,不規則な時間的イベントデータを対象としたクロステンポラリスケールトランスフォーマ (XTSFormer) を提案する。
本モデルでは,時間周期の性質を包括的に捉えた特徴に基づく周期的時間位置エンコーディング(FCPE)と,階層的マルチスケールの時間的注意機構の2つの重要な要素からなる。
これらのスケールはボトムアップクラスタリングアルゴリズムによって決定される。
いくつかの実世界のデータセットに対する大規模な実験により、我々のXTSFormerは予測性能においていくつかのベースライン法より優れていることが示された。
関連論文リスト
- Scalable Event-by-event Processing of Neuromorphic Sensory Signals With Deep State-Space Models [2.551844666707809]
イベントベースのセンサーはリアルタイム処理に適している。
現在の方法では、イベントをフレームに分解するか、イベントデータをイベント単位で直接処理する場合にスケールアップできない。
論文 参考訳(メタデータ) (2024-04-29T08:50:27Z) - Deep Representation Learning for Prediction of Temporal Event Sets in
the Continuous Time Domain [9.71405768795797]
時間的ポイントプロセスは、イベントの予測や予測において重要な役割を果たす。
この問題を解決するために,TPPをベースとしたスケーラブルで効率的な手法を提案する。
論文 参考訳(メタデータ) (2023-09-29T06:46:31Z) - Neural multi-event forecasting on spatio-temporal point processes using
probabilistically enriched transformers [18.66217537327045]
時間と空間における離散的な事象の予測には、危険地震の予測や感染症の発生など、多くの科学的応用がある。
本アーキテクチャでは,正規化フローと層を付加した時間的点過程のニューラルマルチイベント予測を提案する。
我々のネットワークは、複雑な未来の離散イベントのバッチ予測を行い、様々なベンチマークデータセットで最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2022-11-05T14:55:36Z) - HyperHawkes: Hypernetwork based Neural Temporal Point Process [5.607676459156789]
時間的ポイントプロセスは、連続した時間空間における時間間データのモデリングに不可欠なツールとして機能する。
動的環境における見えないシーケンスから事象を予測することは一般化できない。
ハイパーネットワークベースの時間的ポイントプロセスフレームワークである textitHyperHawkes を提案する。
論文 参考訳(メタデータ) (2022-10-01T07:14:19Z) - Modeling Continuous Time Sequences with Intermittent Observations using
Marked Temporal Point Processes [25.074394338483575]
人間の活動を通じて生成された大量のデータは、連続した時間のイベントのシーケンスとして表現することができる。
これらの連続的なイベントシーケンスに対するディープラーニングモデルは、非自明なタスクである。
本研究では,イベントシーケンスが欠落している場合にMTPPを学習するための新しい教師なしモデルと推論手法を提案する。
論文 参考訳(メタデータ) (2022-06-23T18:23:20Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
マルチスケールアテンション正規化フロー(MANF)と呼ばれる非自己回帰型ディープラーニングモデルを提案する。
我々のモデルは累積誤差の影響を回避し、時間の複雑さを増大させない。
本モデルは,多くの多変量データセット上での最先端性能を実現する。
論文 参考訳(メタデータ) (2022-05-16T07:53:42Z) - Learning Temporal Rules from Noisy Timeseries Data [72.93572292157593]
我々は、ノイズのある時間的データ設定内で複合イベントにつながる基礎となる原子イベントとその関係を明らかにすることに注力する。
本稿では、まず原子イベント間の暗黙的な時間的関係を学習し、その後、制御のための論理規則を引き上げるニューラル時間論理プログラミング(Neural Temporal Logic Programming:Neural TLP)を提案する。
論文 参考訳(メタデータ) (2022-02-11T01:29:02Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
本稿では,新しい条件生成モデルである変分相乗型マルチホライゾンネットワーク(VSMHN)を提案する。
不均一なシーケンス間で複雑な相関関係を学習するために、深部プロセスモデルと変動的リカレントニューラルネットワークの進歩を組み合わせるために、調整されたエンコーダが考案された。
我々のモデルは変動予測を用いて効果的に訓練でき、モンテカルロシミュレーションを用いて予測を生成することができる。
論文 参考訳(メタデータ) (2021-01-31T11:00:55Z) - Multi-Scale One-Class Recurrent Neural Networks for Discrete Event
Sequence Anomaly Detection [63.825781848587376]
本稿では,離散イベントシーケンス中の異常を検出する1クラスリカレントニューラルネットワークOC4Seqを提案する。
具体的には、OC4Seqは離散イベントシーケンスを遅延空間に埋め込み、異常を容易に検出することができる。
論文 参考訳(メタデータ) (2020-08-31T04:48:22Z) - A Multi-Channel Neural Graphical Event Model with Negative Evidence [76.51278722190607]
イベントデータセットは、タイムライン上で不規則に発生するさまざまなタイプのイベントのシーケンスである。
基礎となる強度関数を推定するために,非パラメトリックディープニューラルネットワーク手法を提案する。
論文 参考訳(メタデータ) (2020-02-21T23:10:50Z) - Transformer Hawkes Process [79.16290557505211]
本稿では,長期的依存関係を捕捉する自己認識機構を利用したTransformer Hawkes Process (THP) モデルを提案する。
THPは、有意なマージンによる可能性と事象予測の精度の両方の観点から、既存のモデルより優れている。
本稿では、THPが関係情報を組み込む際に、複数の点過程を学習する際の予測性能の改善を実現する具体例を示す。
論文 参考訳(メタデータ) (2020-02-21T13:48:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。