論文の概要: Multi-Region Markovian Gaussian Process: An Efficient Method to Discover Directional Communications Across Multiple Brain Regions
- arxiv url: http://arxiv.org/abs/2402.02686v3
- Date: Thu, 30 May 2024 07:35:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-31 23:13:17.700385
- Title: Multi-Region Markovian Gaussian Process: An Efficient Method to Discover Directional Communications Across Multiple Brain Regions
- Title(参考訳): マルチリージョンマルコフガウス過程:複数の脳領域にわたる指向性コミュニケーションを効果的に発見する方法
- Authors: Weihan Li, Chengrui Li, Yule Wang, Anqi Wu,
- Abstract要約: 主なカテゴリはガウス過程(GP)と線形力学系(LDS)である。
マルチ出力GP, Multi-Region Markovian Gaussian Process (MRM-GP) をミラーする LDS を作成する。
我々の研究は、LDSとマルチ出力GPの接続を確立し、ニューラル記録の潜在空間内の周波数と位相遅延を明示的にモデル化する。
- 参考スコア(独自算出の注目度): 2.600709013150986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Studying the complex interactions between different brain regions is crucial in neuroscience. Various statistical methods have explored the latent communication across multiple brain regions. Two main categories are the Gaussian Process (GP) and Linear Dynamical System (LDS), each with unique strengths. The GP-based approach effectively discovers latent variables with frequency bands and communication directions. Conversely, the LDS-based approach is computationally efficient but lacks powerful expressiveness in latent representation. In this study, we merge both methodologies by creating an LDS mirroring a multi-output GP, termed Multi-Region Markovian Gaussian Process (MRM-GP). Our work establishes a connection between an LDS and a multi-output GP that explicitly models frequencies and phase delays within the latent space of neural recordings. Consequently, the model achieves a linear inference cost over time points and provides an interpretable low-dimensional representation, revealing communication directions across brain regions and separating oscillatory communications into different frequency bands.
- Abstract(参考訳): 異なる脳領域間の複雑な相互作用を研究することは神経科学において重要である。
様々な統計的手法が複数の脳領域にわたる潜伏通信を調査している。
主なカテゴリはガウス過程(GP)と線形力学系(LDS)である。
GPに基づくアプローチは、周波数帯域と通信方向を持つ潜伏変数を効果的に発見する。
逆に、LDSベースのアプローチは計算効率が良いが、潜在表現には強力な表現力がない。
本研究では,Multi-Region Markovian Gaussian Process (MRM-GP) と呼ばれる多出力GPをミラーするLSDを作成することにより,両手法をマージする。
我々の研究は、LDSとマルチ出力GPの接続を確立し、ニューラル記録の潜在空間内の周波数と位相遅延を明示的にモデル化する。
その結果、モデルは時間点よりも線形推論コストを達成し、解釈可能な低次元表現を提供し、脳領域間の通信方向を明らかにし、発振通信を異なる周波数帯域に分離する。
関連論文リスト
- Markovian Gaussian Process: A Universal State-Space Representation for Stationary Temporal Gaussian Process [2.600709013150986]
LDSが定常時間GPをミラーできる普遍的手法を提案する。
この状態空間表現はマルコフ・ガウス過程 (Markovian Gaussian Process, Markovian GP) と呼ばれ、効率的な線形計算を維持しながらカーネル関数の柔軟性を利用する。
論文 参考訳(メタデータ) (2024-06-29T10:50:23Z) - Physics-informed and Unsupervised Riemannian Domain Adaptation for Machine Learning on Heterogeneous EEG Datasets [53.367212596352324]
脳波信号物理を利用した教師なし手法を提案する。
脳波チャンネルをフィールド、ソースフリーなドメイン適応を用いて固定位置にマッピングする。
提案手法は脳-コンピュータインタフェース(BCI)タスクおよび潜在的なバイオマーカー応用におけるロバストな性能を示す。
論文 参考訳(メタデータ) (2024-03-07T16:17:33Z) - A Unified Learning Model for Estimating Fiber Orientation Distribution
Functions on Heterogeneous Multi-shell Diffusion-weighted MRI [7.619657591752497]
拡散強調(DW)MRIは、各ボクセルの局所拡散過程の方向とスケールを、q空間のスペクトルを通して測定する。
近年の微細構造イメージングと多部分解の進展は、信号の放射状b値依存性に新たな注意を喚起している。
単一ステージの球面畳み込みニューラルネットワークを用いて,効率的な繊維配向分布関数推定を行う。
論文 参考訳(メタデータ) (2023-03-29T00:58:18Z) - On Neural Architectures for Deep Learning-based Source Separation of
Co-Channel OFDM Signals [104.11663769306566]
周波数分割多重化(OFDM)信号を含む単一チャネル音源分離問題について検討する。
我々はOFDM構造からの洞察に基づいて、ネットワークパラメータ化に対する重要なドメインインフォームド修正を提案する。
論文 参考訳(メタデータ) (2023-03-11T16:29:13Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
本稿では,CDMS(Consistency and Diversity induced Human Motion)アルゴリズムを提案する。
我々のモデルは、ソースとターゲットデータを異なる多層特徴空間に分解する。
ソースとターゲットデータ間の領域ギャップを低減するために、マルチミューチュアル学習戦略を実行する。
論文 参考訳(メタデータ) (2022-02-10T06:23:56Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
本稿では, マルチモーダルMRIデータから脳腫瘍を抽出するクロスモーダルディープ・フィーチャーラーニング・フレームワークを提案する。
中心となる考え方は、不十分なデータスケールを補うために、マルチモダリティデータにまたがる豊富なパターンをマイニングすることだ。
on the BraTS benchmarks, this proposed cross-modality deep feature learning framework could effective improve the brain tumor segmentation performance。
論文 参考訳(メタデータ) (2022-01-07T07:46:01Z) - Learning shared neural manifolds from multi-subject FMRI data [13.093635609349874]
MRMD-AEmaniと呼ばれる,複数の被験者から共通の埋め込みを実験で学習するニューラルネットワークを提案する。
学習した共通空間は、テンポラル多様体(トレーニング中に見えない新しい点をマッピングできる)を表し、目に見えない時間点の刺激特徴の分類を改善する。
このフレームワークは、将来的には脳-コンピュータインタフェース(BCI)トレーニングなど、多くのダウンストリームアプリケーションに応用できると考えています。
論文 参考訳(メタデータ) (2021-12-22T23:08:39Z) - Cross-Modality Brain Tumor Segmentation via Bidirectional
Global-to-Local Unsupervised Domain Adaptation [61.01704175938995]
本論文では,UDAスキームに基づくBiGL(Bidirectional Global-to-Local)適応フレームワークを提案する。
具体的には、脳腫瘍をセグメント化するために、双方向画像合成およびセグメンテーションモジュールを提案する。
提案手法は, 最先端の非教師なし領域適応法を大きなマージンで上回っている。
論文 参考訳(メタデータ) (2021-05-17T10:11:45Z) - Deep Representational Similarity Learning for analyzing neural
signatures in task-based fMRI dataset [81.02949933048332]
本稿では、表現類似度分析(RSA)の深部拡張であるDRSL(Deep Representational similarity Learning)を開発する。
DRSLは、多数の被験者を持つfMRIデータセットにおける様々な認知タスク間の類似性を分析するのに適している。
論文 参考訳(メタデータ) (2020-09-28T18:30:14Z) - Multi-Scale Neural network for EEG Representation Learning in BCI [2.105172041656126]
本稿では,複数の周波数/時間範囲における特徴表現を探索する深層多スケールニューラルネットワークを提案する。
スペクトル時間情報を用いた脳波信号の表現により,提案手法を多種多様なパラダイムに応用することができる。
論文 参考訳(メタデータ) (2020-03-02T04:06:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。