論文の概要: Markovian Gaussian Process: A Universal State-Space Representation for Stationary Temporal Gaussian Process
- arxiv url: http://arxiv.org/abs/2407.00397v1
- Date: Sat, 29 Jun 2024 10:50:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-04 03:25:29.406099
- Title: Markovian Gaussian Process: A Universal State-Space Representation for Stationary Temporal Gaussian Process
- Title(参考訳): マルコフガウス過程:定常時空間ガウス過程の普遍的状態空間表現
- Authors: Weihan Li, Yule Wang, Chengrui Li, Anqi Wu,
- Abstract要約: LDSが定常時間GPをミラーできる普遍的手法を提案する。
この状態空間表現はマルコフ・ガウス過程 (Markovian Gaussian Process, Markovian GP) と呼ばれ、効率的な線形計算を維持しながらカーネル関数の柔軟性を利用する。
- 参考スコア(独自算出の注目度): 2.600709013150986
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Gaussian Processes (GPs) and Linear Dynamical Systems (LDSs) are essential time series and dynamic system modeling tools. GPs can handle complex, nonlinear dynamics but are computationally demanding, while LDSs offer efficient computation but lack the expressive power of GPs. To combine their benefits, we introduce a universal method that allows an LDS to mirror stationary temporal GPs. This state-space representation, known as the Markovian Gaussian Process (Markovian GP), leverages the flexibility of kernel functions while maintaining efficient linear computation. Unlike existing GP-LDS conversion methods, which require separability for most multi-output kernels, our approach works universally for single- and multi-output stationary temporal kernels. We evaluate our method by computing covariance, performing regression tasks, and applying it to a neuroscience application, demonstrating that our method provides an accurate state-space representation for stationary temporal GPs.
- Abstract(参考訳): Gaussian Processs (GP) と Linear Dynamical Systems (LDS) は重要な時系列および動的システムモデリングツールである。
GPは複雑な非線形力学を扱えるが、計算的に要求される一方、LSDは効率的な計算を提供するが、GPの表現力に欠ける。
それらの利点を組み合わせるために、LDSが定常時間GPをミラーできる普遍的な手法を導入する。
この状態空間表現はマルコフ・ガウス過程 (Markovian Gaussian Process, Markovian GP) と呼ばれ、効率的な線形計算を維持しながらカーネル関数の柔軟性を利用する。
多くのマルチ出力カーネルに対して分離性を必要とする既存のGP-LDS変換法とは異なり、本手法は単一および複数出力の定常カーネルに対して普遍的に機能する。
我々は,共分散を計算し,回帰処理を行い,それを神経科学応用に適用することにより,定常時間GPに対して正確な状態空間表現を提供することを示す。
関連論文リスト
- Two-Stage ML-Guided Decision Rules for Sequential Decision Making under Uncertainty [55.06411438416805]
SDMU (Sequential Decision Making Under Uncertainty) は、エネルギー、金融、サプライチェーンといった多くの領域において、ユビキタスである。
いくつかのSDMUは、自然にマルチステージ問題(MSP)としてモデル化されているが、結果として得られる最適化は、計算の観点からは明らかに困難である。
本稿では,2段階の一般決定規則(TS-GDR)を導入し,線形関数を超えて政策空間を一般化する手法を提案する。
TS-GDRの有効性は、TS-LDR(Two-Stage Deep Decision Rules)と呼ばれるディープリカレントニューラルネットワークを用いたインスタンス化によって実証される。
論文 参考訳(メタデータ) (2024-05-23T18:19:47Z) - Towards Efficient Modeling and Inference in Multi-Dimensional Gaussian
Process State-Space Models [11.13664702335756]
我々は,高次元潜在状態空間における遷移関数を効率的にモデル化するために,効率的な変換ガウス過程(ETGP)をGPSSMに統合することを提案する。
また,パラメータ数および計算複雑性の観点から,既存の手法を超越した変分推論アルゴリズムを開発した。
論文 参考訳(メタデータ) (2023-09-03T04:34:33Z) - Linear Time GPs for Inferring Latent Trajectories from Neural Spike
Trains [7.936841911281107]
我々は,Hida-Mat'ernカーネルと共役変分推論(CVI)を利用した潜在GPモデルの一般的な推論フレームワークであるcvHMを提案する。
我々は任意の確率で線形時間複雑性を持つ潜在神経軌道の変分推定を行うことができる。
論文 参考訳(メタデータ) (2023-06-01T16:31:36Z) - FaDIn: Fast Discretized Inference for Hawkes Processes with General
Parametric Kernels [82.53569355337586]
この研究は、有限なサポートを持つ一般パラメトリックカーネルを用いた時間点プロセス推論の効率的な解を提供する。
脳磁図(MEG)により記録された脳信号からの刺激誘発パターンの発生をモデル化し,その有効性を評価する。
その結果,提案手法により,最先端技術よりもパターン遅延の推定精度が向上することが示唆された。
論文 参考訳(メタデータ) (2022-10-10T12:35:02Z) - Markovian Gaussian Process Variational Autoencoders [19.686719654642392]
我々はマルコフ型GPの等価離散状態空間表現を活用し、カルマンフィルタと平滑化による線形時間 GPVAE トレーニングを可能にする。
我々のモデルであるMGPVAE(Markovian GPVAE)では,従来の手法と比較して,多種多様な高次元時間的課題を示す。
論文 参考訳(メタデータ) (2022-07-12T14:10:01Z) - Non-Gaussian Gaussian Processes for Few-Shot Regression [71.33730039795921]
乱変数ベクトルの各成分上で動作し,パラメータを全て共有する可逆なODEベースのマッピングを提案する。
NGGPは、様々なベンチマークとアプリケーションに対する競合する最先端のアプローチよりも優れています。
論文 参考訳(メタデータ) (2021-10-26T10:45:25Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
本稿では,EGPメタラーナーがGP学習者のインクリメンタルアンサンブル(IE-) GPフレームワークを提案し,それぞれが所定のカーネル辞書に属するユニークなカーネルを持つ。
各GP専門家は、ランダムな特徴ベースの近似を利用してオンライン予測とモデル更新を行い、そのスケーラビリティを生かし、EGPメタラーナーはデータ適応重みを生かし、熟練者ごとの予測を合成する。
新たなIE-GPは、EGPメタラーナーおよび各GP学習者内における構造化力学をモデル化することにより、時間変化関数に対応するように一般化される。
論文 参考訳(メタデータ) (2021-10-13T15:11:25Z) - A Kernel-Based Approach to Non-Stationary Reinforcement Learning in
Metric Spaces [53.47210316424326]
KeRNSは、非定常マルコフ決定過程におけるエピソード強化学習のためのアルゴリズムである。
我々は、状態-作用空間の被覆次元と時間とともにMDPの総変動にスケールする後悔境界を証明した。
論文 参考訳(メタデータ) (2020-07-09T21:37:13Z) - Fast Variational Learning in State-Space Gaussian Process Models [29.630197272150003]
我々は共役計算変分推論と呼ばれる既存の手法に基づいて構築する。
ジャスト・イン・タイムのコンパイルを利用する効率的なJAX実装を提供しています。
我々の手法は、何百万ものデータポイントを持つ時系列にスケールできる状態空間GPモデルにおいて、高速かつ安定した変分推論をもたらす。
論文 参考訳(メタデータ) (2020-07-09T12:06:34Z) - SLEIPNIR: Deterministic and Provably Accurate Feature Expansion for
Gaussian Process Regression with Derivatives [86.01677297601624]
本稿では,2次フーリエ特徴に基づく導関数によるGP回帰のスケーリング手法を提案する。
我々は、近似されたカーネルと近似された後部の両方に適用される決定論的、非漸近的、指数関数的に高速な崩壊誤差境界を証明した。
論文 参考訳(メタデータ) (2020-03-05T14:33:20Z) - Sequential Gaussian Processes for Online Learning of Nonstationary
Functions [9.997259201098602]
連続モンテカルロアルゴリズムは,オンラインの分散推論を可能としながら,非定常挙動を捉えたGPの無限混合に適合する。
提案手法は,時系列データにおける非定常性の存在下でのオンラインGP推定における最先端手法の性能を実証的に改善する。
論文 参考訳(メタデータ) (2019-05-24T02:29:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。