論文の概要: SafEDMD: A certified learning architecture tailored to data-driven control of nonlinear dynamical systems
- arxiv url: http://arxiv.org/abs/2402.03145v2
- Date: Fri, 17 May 2024 12:26:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-20 18:31:55.347762
- Title: SafEDMD: A certified learning architecture tailored to data-driven control of nonlinear dynamical systems
- Title(参考訳): SafEDMD:非線形力学系のデータ駆動制御に適した認定学習アーキテクチャ
- Authors: Robin Strässer, Manuel Schaller, Karl Worthmann, Julian Berberich, Frank Allgöwer,
- Abstract要約: 本稿では,厳密な証明とともに提供されるEDMDベースの新しい学習アーキテクチャであるSafEDMDを提案する。
我々は、その起源を消し、制御タスクに適した比例誤差境界を導出し、半定値プログラミングに基づく認証制御設計へと導出する。
- 参考スコア(独自算出の注目度): 0.04369058206183194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Koopman operator serves as the theoretical backbone for machine learning of dynamical control systems, where the operator is heuristically approximated by extended dynamic mode decomposition (EDMD). In this paper, we propose Stability- and certificate-oriented EDMD (SafEDMD): a novel EDMD-based learning architecture which comes along with rigorous certificates, resulting in a reliable surrogate model generated in a data-driven fashion. To ensure the trustworthiness of SafEDMD, we derive proportional error bounds, which vanish at the origin and are tailored to control tasks, leading to certified controller design based on semi-definite programming. We illustrate the developed method by means of several benchmark examples and highlight the advantages over state-of-the-art methods.
- Abstract(参考訳): クープマン演算子は動的制御系の機械学習の理論的バックボーンとして機能し、演算子は拡張動的モード分解(EDMD)によってヒューリスティックに近似される。
本稿では,厳密な証明とともに提供されるEDMDベースの新しい学習アーキテクチャであるSafEDMDを提案する。
SafEDMDの信頼性を確保するために、原点で消滅し、タスクの制御に適した比例誤差境界を導出し、半定値プログラミングに基づく認証制御設計を実現する。
本稿では,いくつかのベンチマーク例を用いて開発手法を説明し,最先端手法の利点を強調した。
関連論文リスト
- Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - Learning Exactly Linearizable Deep Dynamics Models [0.07366405857677226]
本稿では, 安定度, 信頼性, 信頼性を確保するために, 様々な制御理論を容易に適用可能な, 線形化可能な動的モデルの学習法を提案する。
提案手法は, 自動車エンジンのリアルタイム制御に応用され, 予測性能と制約下での安定制御が良好であることを示す。
論文 参考訳(メタデータ) (2023-11-30T05:40:55Z) - Promises of Deep Kernel Learning for Control Synthesis [14.401542690028554]
ディープラーニング(DKL)は、ニューラルネットワークの表現力とガウス過程の不確実性を組み合わせたものだ。
動的システムの制御にDKLを用いることが可能な,スケーラブルな抽象化ベースのフレームワークを開発した。
論文 参考訳(メタデータ) (2023-09-12T20:04:16Z) - Diffusion Model as Representation Learner [86.09969334071478]
Diffusion Probabilistic Models (DPMs) は、最近、様々な生成タスクにおいて顕著な結果を示した。
本稿では,DPMが獲得した知識を認識タスクに活用する新しい知識伝達手法を提案する。
論文 参考訳(メタデータ) (2023-08-21T00:38:39Z) - EmbedDistill: A Geometric Knowledge Distillation for Information
Retrieval [83.79667141681418]
大規模なニューラルモデル(トランスフォーマーなど)は、情報検索(IR)のための最先端のパフォーマンスを達成する
本研究では,大規模教師モデルで学習したクエリとドキュメント間の相対的幾何を利用した新しい蒸留手法を提案する。
提案手法は, 両エンコーダ (DE) とクロスエンコーダ (CE) の2種類の教師モデルから, 95~97%の教師性能を維持できる1/10の非対称な学生への蒸留に成功した。
論文 参考訳(メタデータ) (2023-01-27T22:04:37Z) - Transferring Reinforcement Learning for DC-DC Buck Converter Control via
Duty Ratio Mapping: From Simulation to Implementation [0.0]
本稿では,DC-DCコンバータ用のデリケートに設計されたデューティ比マッピング(DRM)を用いた転送手法を提案する。
モデルフリー深部強化学習(DRL)コントローラの実装を可能にするために,詳細なsim-to-realプロセスを提案する。
論文 参考訳(メタデータ) (2021-10-20T11:08:17Z) - Is Disentanglement enough? On Latent Representations for Controllable
Music Generation [78.8942067357231]
強い生成デコーダが存在しない場合、アンタングル化は必ずしも制御性を意味するものではない。
VAEデコーダに対する潜伏空間の構造は、異なる属性を操作するための生成モデルの能力を高める上で重要な役割を果たす。
論文 参考訳(メタデータ) (2021-08-01T18:37:43Z) - Deep Learning Explicit Differentiable Predictive Control Laws for
Buildings [1.4121977037543585]
未知の非線形システムに対する制約付き制御法を学習するための微分予測制御(DPC)手法を提案する。
DPCは、明示的非線形モデル予測制御(MPC)から生じるマルチパラメトリックプログラミング問題に対する近似解を提供する
論文 参考訳(メタデータ) (2021-07-25T16:47:57Z) - Imposing Robust Structured Control Constraint on Reinforcement Learning
of Linear Quadratic Regulator [0.0]
本稿では,分散学習制御の手法を編み出した汎用構造の設計について述べる。
方法論の開発には、強化学習(RL)と制御理論による十分な安定性と性能保証を併用した考え方を用いる。
6エージェントのマルチエージェントネットワーク上でのシミュレーションによる理論的結果の検証を行った。
論文 参考訳(メタデータ) (2020-11-12T00:31:39Z) - How Training Data Impacts Performance in Learning-based Control [67.7875109298865]
本稿では,トレーニングデータの密度と制御性能の関係を考察する。
データセットの品質尺度を定式化し、$rho$-gap と呼ぶ。
フィードバック線形化制御法に$rho$-gapを適用する方法を示す。
論文 参考訳(メタデータ) (2020-05-25T12:13:49Z) - Guided Variational Autoencoder for Disentanglement Learning [79.02010588207416]
本稿では,潜在表現非絡み合い学習を行うことで,制御可能な生成モデルを学習できるアルゴリズム,Guided-VAEを提案する。
我々は、ガイド-VAEにおける教師なし戦略と教師なし戦略を設計し、バニラVAE上でのモデリングと制御能力の強化を観察する。
論文 参考訳(メタデータ) (2020-04-02T20:49:15Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。