論文の概要: Respect the model: Fine-grained and Robust Explanation with Sharing Ratio Decomposition
- arxiv url: http://arxiv.org/abs/2402.03348v2
- Date: Thu, 12 Dec 2024 05:56:34 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-13 13:29:54.684669
- Title: Respect the model: Fine-grained and Robust Explanation with Sharing Ratio Decomposition
- Title(参考訳): モデルを考える:共有比分解によるきめ細粒度とロバストな説明
- Authors: Sangyu Han, Yearim Kim, Nojun Kwak,
- Abstract要約: SRD(Sharing Ratio Decomposition)と呼ばれる新しいeXplainable AI(XAI)手法を提案する。
また、アクティベーション・パタン・オンリー予測(APOP)と呼ばれる興味深い観察結果を導入し、不活性ニューロンの重要性を強調した。
- 参考スコア(独自算出の注目度): 26.240518216121487
- License:
- Abstract: The truthfulness of existing explanation methods in authentically elucidating the underlying model's decision-making process has been questioned. Existing methods have deviated from faithfully representing the model, thus susceptible to adversarial attacks. To address this, we propose a novel eXplainable AI (XAI) method called SRD (Sharing Ratio Decomposition), which sincerely reflects the model's inference process, resulting in significantly enhanced robustness in our explanations. Different from the conventional emphasis on the neuronal level, we adopt a vector perspective to consider the intricate nonlinear interactions between filters. We also introduce an interesting observation termed Activation-Pattern-Only Prediction (APOP), letting us emphasize the importance of inactive neurons and redefine relevance encapsulating all relevant information including both active and inactive neurons. Our method, SRD, allows for the recursive decomposition of a Pointwise Feature Vector (PFV), providing a high-resolution Effective Receptive Field (ERF) at any layer.
- Abstract(参考訳): 基礎となるモデルの意思決定過程を真に解明する既存の説明手法の真偽は疑問視されている。
既存の方法は、モデルを忠実に表現することから逸脱しており、敵の攻撃に影響を受けやすい。
そこで本研究では,SRD(Sharing Ratio Decomposition)と呼ばれる新しいeXplainable AI(XAI)手法を提案する。
従来の神経レベルでの強調と異なり、フィルタ間の複雑な非線形相互作用を考慮するためにベクトル的視点を採用する。
また、アクティベーション・パタン・オンリー予測(APOP)と呼ばれる興味深い観察結果を導入し、不活性ニューロンの重要性を強調し、活性ニューロンと不活性ニューロンの両方を含むすべての関連情報をカプセル化する関連性を再定義する。
SRD法は,任意の層に高分解能の有効受容場(ERF)を提供するPFVを再帰的に分解することができる。
関連論文リスト
- RieszBoost: Gradient Boosting for Riesz Regression [49.737777802061984]
本稿では,Riesz表現子を直接推定するために,その明示的な解析形式を必要とせず,新たな勾配向上アルゴリズムを提案する。
提案アルゴリズムは,様々な関数を対象とした間接推定手法と同等以上の性能を示す。
論文 参考訳(メタデータ) (2025-01-08T23:04:32Z) - Total Uncertainty Quantification in Inverse PDE Solutions Obtained with Reduced-Order Deep Learning Surrogate Models [50.90868087591973]
機械学習サロゲートモデルを用いて得られた逆PDE解の総不確かさを近似したベイズ近似法を提案する。
非線型拡散方程式に対する反復的アンサンブルスムーズおよび深層アンサンブル法との比較により,提案手法を検証した。
論文 参考訳(メタデータ) (2024-08-20T19:06:02Z) - Reactive Model Correction: Mitigating Harm to Task-Relevant Features via Conditional Bias Suppression [12.44857030152608]
ディープニューラルネットワークは、高リスクアプリケーションにおいて致命的な結果をもたらす可能性のあるトレーニングデータにおいて、学習と急激な相関に依存する傾向があります。
余剰訓練を伴わずにポストホックに適用できる有害な特徴に対するモデル依存を抑制するための様々なアプローチが提案されている。
本稿では,モデル由来の知識とeXplainable Artificial Intelligence(XAI)の洞察に基づくリアクティブアプローチを提案する。
論文 参考訳(メタデータ) (2024-04-15T09:16:49Z) - Manipulating Feature Visualizations with Gradient Slingshots [54.31109240020007]
本稿では,モデルの決定過程に大きな影響を及ぼすことなく,特徴可視化(FV)を操作する新しい手法を提案する。
ニューラルネットワークモデルにおける本手法の有効性を評価し,任意の選択したニューロンの機能を隠蔽する能力を示す。
論文 参考訳(メタデータ) (2024-01-11T18:57:17Z) - ODE-based Recurrent Model-free Reinforcement Learning for POMDPs [15.030970899252601]
我々は,POMDPを解くために,新しいODEベースのリカレントモデルとモデルレス強化学習フレームワークを組み合わせる。
様々なPO連続制御タスクとメタRLタスクにまたがる手法の有効性を実験的に実証した。
提案手法は,不規則にサンプリングされた時系列をモデル化するODEの能力のため,不規則な観測に対して頑健であることを示す。
論文 参考訳(メタデータ) (2023-09-25T12:13:56Z) - Convex Latent-Optimized Adversarial Regularizers for Imaging Inverse
Problems [8.33626757808923]
本稿では,新しいデータ駆動型パラダイムであるConvex Latent-d Adrial Regularizers (CLEAR)を紹介する。
CLEARは、ディープラーニング(DL)と変分正規化の融合を表す。
本手法は従来型のデータ駆動手法と従来型の正規化手法を一貫して上回っている。
論文 参考訳(メタデータ) (2023-09-17T12:06:04Z) - Toward Certified Robustness Against Real-World Distribution Shifts [65.66374339500025]
我々は、データから摂動を学ぶために生成モデルを訓練し、学習したモデルの出力に関して仕様を定義する。
この設定から生じるユニークな挑戦は、既存の検証者がシグモイドの活性化を厳密に近似できないことである。
本稿では,古典的な反例誘導的抽象的洗練の概念を活用するシグモイドアクティベーションを扱うための一般的なメタアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-06-08T04:09:13Z) - Robust lEarned Shrinkage-Thresholding (REST): Robust unrolling for
sparse recover [87.28082715343896]
我々は、モデルミス特定を前進させるのに堅牢な逆問題を解決するためのディープニューラルネットワークについて検討する。
我々は,アルゴリズムの展開手法を根底にある回復問題のロバストバージョンに適用することにより,新しい堅牢なディープニューラルネットワークアーキテクチャを設計する。
提案したRESTネットワークは,圧縮センシングとレーダイメージングの両問題において,最先端のモデルベースおよびデータ駆動アルゴリズムを上回る性能を示す。
論文 参考訳(メタデータ) (2021-10-20T06:15:45Z) - Interpreting Deep Neural Networks with Relative Sectional Propagation by
Analyzing Comparative Gradients and Hostile Activations [37.11665902583138]
DNN(Deep Neural Networks)の出力予測を分解するための新しいアトリビューション手法であるRelative Sectional Propagation(RSP)を提案する。
我々は、敵対的因子をターゲットの属性を見つけるのを妨げる要素として定義し、活性化ニューロンの非抑制的な性質を克服するために区別可能な方法でそれを伝播させる。
本手法により,従来の帰属法と比較して,DNNのクラス識別性や活性化ニューロンの詳細な解明により,DNNの予測を分解することができる。
論文 参考訳(メタデータ) (2020-12-07T03:11:07Z) - Proactive Pseudo-Intervention: Causally Informed Contrastive Learning
For Interpretable Vision Models [103.64435911083432]
PPI(Proactive Pseudo-Intervention)と呼ばれる新しい対照的な学習戦略を提案する。
PPIは、因果関係のない画像の特徴を保護するために積極的に介入する。
また,重要な画像画素を識別するための,因果的に通知された新たなサリエンスマッピングモジュールを考案し,モデル解釈の容易性を示す。
論文 参考訳(メタデータ) (2020-12-06T20:30:26Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。