論文の概要: Ten Hard Problems in Artificial Intelligence We Must Get Right
- arxiv url: http://arxiv.org/abs/2402.04464v1
- Date: Tue, 6 Feb 2024 23:16:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-08 17:30:43.335356
- Title: Ten Hard Problems in Artificial Intelligence We Must Get Right
- Title(参考訳): 人工知能の難解な10の課題
- Authors: Gavin Leech and Simson Garfinkel and Misha Yagudin and Alexander
Briand and Aleksandr Zhuravlev
- Abstract要約: AIの約束を阻止し、AIのリスクを引き起こすAI2050の「ハード問題」について検討する。
それぞれの問題について、その領域を概説し、最近の重要な作業を特定し、今後の方向性を提案する。
- 参考スコア(独自算出の注目度): 76.13992275864176
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We explore the AI2050 "hard problems" that block the promise of AI and cause
AI risks: (1) developing general capabilities of the systems; (2) assuring the
performance of AI systems and their training processes; (3) aligning system
goals with human goals; (4) enabling great applications of AI in real life; (5)
addressing economic disruptions; (6) ensuring the participation of all; (7) at
the same time ensuring socially responsible deployment; (8) addressing any
geopolitical disruptions that AI causes; (9) promoting sound governance of the
technology; and (10) managing the philosophical disruptions for humans living
in the age of AI. For each problem, we outline the area, identify significant
recent work, and suggest ways forward. [Note: this paper reviews literature
through January 2023.]
- Abstract(参考訳): We explore the AI2050 "hard problems" that block the promise of AI and cause AI risks: (1) developing general capabilities of the systems; (2) assuring the performance of AI systems and their training processes; (3) aligning system goals with human goals; (4) enabling great applications of AI in real life; (5) addressing economic disruptions; (6) ensuring the participation of all; (7) at the same time ensuring socially responsible deployment; (8) addressing any geopolitical disruptions that AI causes; (9) promoting sound governance of the technology; and (10) managing the philosophical disruptions for humans living in the age of AI.
それぞれの問題について、その領域を概説し、最近の重要な作業を特定し、今後の方向性を提案する。
(注:2023年1月までの文献をレビューする。)
関連論文リスト
- Imagining and building wise machines: The centrality of AI metacognition [78.76893632793497]
AIシステムは知恵を欠いている。
AI研究はタスクレベルの戦略に焦点を当てているが、メタ認知はAIシステムでは未発達である。
メタ認知機能をAIシステムに統合することは、その堅牢性、説明可能性、協力性、安全性を高めるために不可欠である。
論文 参考訳(メタデータ) (2024-11-04T18:10:10Z) - AI in Action: Accelerating Progress Towards the Sustainable Development Goals [4.09375125119842]
私たちは、国連の持続可能な開発目標に対する行動を促進するAIの可能性を示すために、Googleの内部および共同研究、技術的作業、および社会的影響イニシアチブを描いています。
この論文では、コンピュータビジョン、生成AI、自然言語処理、マルチモーダルAIを含むAIの能力を強調し、AIが17のSDGすべてにまたがる問題解決へのアプローチをどのように変えているかを示している。
そして私たちは、大胆で責任あるイノベーションを推進し、インパクトを高め、アクセシビリティのギャップを埋め、すべての人がAIから恩恵を受けられるように、AI開発とデプロイメントに関する洞察を提供します。
論文 参考訳(メタデータ) (2024-07-02T23:25:27Z) - Reconfiguring Participatory Design to Resist AI Realism [1.0878040851638]
本稿では,参加型デザインがAIリアリズムに疑問を呈し抵抗する役割を担っていることを論じる。
AIリアリズムの3つの側面について検討する:真のエンパワーメントを欠く民主化のファサード、人間の適応性への要求、AIシステムを実現する必要不可欠な人的労働の難しさ。
PDを再構成して価値中心のビジョンへの関与を継続し、AI以外の選択肢を探究し、AIシステムを目に見えるものにすることで、AIリアリズムに抵抗することを提案する。
論文 参考訳(メタデータ) (2024-06-05T13:21:46Z) - Now, Later, and Lasting: Ten Priorities for AI Research, Policy, and Practice [63.20307830884542]
今後数十年は、産業革命に匹敵する人類の転換点になるかもしれない。
10年前に立ち上げられたこのプロジェクトは、複数の専門分野の専門家による永続的な研究にコミットしている。
AI技術の短期的および長期的影響の両方に対処する、アクションのための10のレコメンデーションを提供します。
論文 参考訳(メタデータ) (2024-04-06T22:18:31Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Inherent Limitations of AI Fairness [16.588468396705366]
AIフェアネスの研究は、コンピュータ科学、社会科学、法学、哲学と結びついた豊富な研究分野へと急速に発展してきた。
AIフェアネスの測定と達成のための多くの技術的ソリューションが提案されているが、そのアプローチは近年、誤解を招く、非現実的で有害であるとして批判されている。
論文 参考訳(メタデータ) (2022-12-13T11:23:24Z) - Aligning Artificial Intelligence with Humans through Public Policy [0.0]
このエッセイは、下流のタスクに活用可能なポリシーデータの構造を学ぶAIの研究の概要を概説する。
これはAIとポリシーの"理解"フェーズを表していると私たちは考えていますが、AIを整合させるために人的価値の重要な源としてポリシーを活用するには、"理解"ポリシーが必要です。
論文 参考訳(メタデータ) (2022-06-25T21:31:14Z) - Proceedings of the Artificial Intelligence for Cyber Security (AICS)
Workshop at AAAI 2022 [55.573187938617636]
ワークショップは、サイバーセキュリティの問題へのAIの適用に焦点を当てる。
サイバーシステムは大量のデータを生成し、これを効果的に活用することは人間の能力を超えます。
論文 参考訳(メタデータ) (2022-02-28T18:27:41Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
我々は,信頼に値するAIを実現する上で最も重要な6つの要素,(i)安全とロバスト性,(ii)非差別と公正,(iii)説明可能性,(iv)プライバシー,(v)説明可能性と監査性,(vi)環境ウェルビーイングに焦点をあてる。
各次元について、分類学に基づく最近の関連技術について概観し、実世界のシステムにおけるそれらの応用を概説する。
論文 参考訳(メタデータ) (2021-07-12T14:21:46Z) - Socially Responsible AI Algorithms: Issues, Purposes, and Challenges [31.382000425295885]
技術者とAI研究者は、信頼できるAIシステムを開発する責任がある。
AIと人間の長期的な信頼を構築するためには、アルゴリズムの公正性を超えて考えることが鍵だ、と私たちは主張する。
論文 参考訳(メタデータ) (2021-01-01T17:34:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。