論文の概要: Riemann-Lebesgue Forest for Regression
- arxiv url: http://arxiv.org/abs/2402.04550v3
- Date: Fri, 10 May 2024 01:06:41 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 11:27:00.501229
- Title: Riemann-Lebesgue Forest for Regression
- Title(参考訳): Riemann-Lebesgue Forest for Regression (英語)
- Authors: Tian Qin, Wei-Min Huang,
- Abstract要約: 我々はリーマン・ルベーグ木(RLT)と呼ばれる新しい木学習者を開発し、ルベーグ型伐採を行う機会を得た。
最適リーベーグ型切削は通常のCART citeBreiman 1984AR切削よりもY$の分散低減効果が大きいことを示す。
- 参考スコア(独自算出の注目度): 7.262815775303641
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a novel ensemble method called Riemann-Lebesgue Forest (RLF) for regression. The core idea in RLF is to mimic the way how a measurable function can be approximated by partitioning its range into a few intervals. With this idea in mind, we develop a new tree learner named Riemann-Lebesgue Tree (RLT) which has a chance to perform Lebesgue type cutting,i.e splitting the node from response $Y$ at certain non-terminal nodes. We show that the optimal Lebesgue type cutting results in larger variance reduction in response $Y$ than ordinary CART \cite{Breiman1984ClassificationAR} cutting (an analogue of Riemann partition). Such property is beneficial to the ensemble part of RLF. We also generalize the asymptotic normality of RLF under different parameter settings. Two one-dimensional examples are provided to illustrate the flexibility of RLF. The competitive performance of RLF against original random forest \cite{Breiman2001RandomF} is demonstrated by experiments in simulation data and real world datasets.
- Abstract(参考訳): 本稿では,レグレッションのためのRLF(Riemann-Lebesgue Forest)と呼ばれる新しいアンサンブル手法を提案する。
RLFの中核となる考え方は、測定可能な関数を数区間に分割することで近似する方法を模倣することである。
このアイデアを念頭に置いて、リーマン・ルベーグ・ツリー(RLT)と呼ばれる新しいツリー学習者を開発し、リーマン・ルベーグ型伐採を行う機会、すなわち、ある非終端ノードで応答$Y$からノードを分割する。
最適リーベーグ型切削は,通常のCART \cite{Breiman 1984ClassificationAR} 切削(リーマン分割の類似)よりも,Y$のばらつきが大きくなることを示す。
このような性質はRLFのアンサンブル部分に有益である。
また,パラメータ設定の異なる RLF の漸近正規性を一般化する。
RLFの柔軟性を示す2つの一次元例が提供されている。
RLFの原生無作為林に対する競争性能はシミュレーションデータと実世界のデータセットの実験によって実証された。
関連論文リスト
- von Mises Quasi-Processes for Bayesian Circular Regression [57.88921637944379]
円値ランダム関数上の表現的および解釈可能な分布の族を探索する。
結果の確率モデルは、統計物理学における連続スピンモデルと関係を持つ。
後続推論のために、高速マルコフ連鎖モンテカルロサンプリングに寄与するストラトノビッチのような拡張を導入する。
論文 参考訳(メタデータ) (2024-06-19T01:57:21Z) - Streamlining in the Riemannian Realm: Efficient Riemannian Optimization
with Loopless Variance Reduction [4.578425862931332]
本研究はユークリッドとリーマンの設定の両方で用いられる決定的な還元機構に焦点を当てる。
ユークリッド法により動機付け, コインフリップによって引き起こされる計算で外ループを置換するR法を導入する。
フレームワークとしてR-を用いることで、様々な重要な設定に適用可能であることを示す。
論文 参考訳(メタデータ) (2024-03-11T12:49:37Z) - Inference with Mondrian Random Forests [7.842152902652216]
回帰設定において、モンドリアンランダムフォレストによってなされた推定に対して中心極限定理を与える。
また,モンドリアンの無作為林に偏りを生じさせ,極小最大推定率を達成できる方法を提案する。
論文 参考訳(メタデータ) (2023-10-15T01:41:42Z) - Dual-sPLS: a family of Dual Sparse Partial Least Squares regressions for
feature selection and prediction with tunable sparsity; evaluation on
simulated and near-infrared (NIR) data [1.6099403809839032]
この論文で示された変種であるDual-sPLSは、古典的なPLS1アルゴリズムを一般化する。
正確な予測と効率的な解釈のバランスを提供する。
コードはRでオープンソースパッケージとして提供される。
論文 参考訳(メタデータ) (2023-01-17T21:50:35Z) - Kernel-based off-policy estimation without overlap: Instance optimality
beyond semiparametric efficiency [53.90687548731265]
本研究では,観測データに基づいて線形関数を推定するための最適手順について検討する。
任意の凸および対称函数クラス $mathcalF$ に対して、平均二乗誤差で有界な非漸近局所ミニマックスを導出する。
論文 参考訳(メタデータ) (2023-01-16T02:57:37Z) - Provably Efficient Offline Reinforcement Learning with Trajectory-Wise
Reward [66.81579829897392]
我々はPessimistic vAlue iteRaTionとrEward Decomposition (PARTED)という新しいオフライン強化学習アルゴリズムを提案する。
PartEDは、最小2乗ベースの報酬再分配を通じて、ステップごとのプロキシ報酬に軌道を分解し、学習したプロキシ報酬に基づいて悲観的な値を実行する。
私たちの知る限りでは、PartEDは、トラジェクティブな報酬を持つ一般のMDPにおいて、証明可能な効率のよい最初のオフラインRLアルゴリズムである。
論文 参考訳(メタデータ) (2022-06-13T19:11:22Z) - Random Forest Weighted Local Fréchet Regression with Random Objects [18.128663071848923]
本稿では,新しいランダム森林重み付き局所Fr'echet回帰パラダイムを提案する。
最初の方法は、これらの重みを局所平均として、条件付きFr'echet平均を解くことである。
第二の手法は局所線形Fr'echet回帰を行い、どちらも既存のFr'echet回帰法を大幅に改善した。
論文 参考訳(メタデータ) (2022-02-10T09:10:59Z) - Generalised Boosted Forests [0.9899017174990579]
リンク空間におけるMLE型推定から始まり、それから一般化された残余を定義する。
これらの残差とそれに対応する重みをベースとなるランダムフォレストに適合させ、これを繰り返してブーストランダムフォレストを得る。
我々は、ランダムな森林ステップの両方がテストセットのログ類似度を減少させることをシミュレーションおよび実データで示す。
論文 参考訳(メタデータ) (2021-02-24T21:17:31Z) - HiPaR: Hierarchical Pattern-aided Regression [71.22664057305572]
HiPaRは、$p Rightarrow y = f(X)$という形式のハイブリッドルールをマイニングします。ここでは、$p$はデータ領域の特性付けであり、$f(X)$は興味ある$y$の変数上の線形回帰モデルです。
HiPaRはパターンマイニング技術を利用して、ターゲット変数が局所線形モデルによって正確に説明できるデータの領域を特定する。
実験が示すように、hipalは既存のパターンベースの回帰法よりも少ないルールをマイニングしながら、最先端の予測性能を実現しています。
論文 参考訳(メタデータ) (2021-02-24T15:53:17Z) - Bayesian Quadrature on Riemannian Data Manifolds [79.71142807798284]
データに固有の非線形幾何学構造をモデル化する原則的な方法が提供される。
しかし、これらの演算は通常計算的に要求される。
特に、正規法則上の積分を数値計算するためにベイズ二次(bq)に焦点を当てる。
先行知識と活発な探索手法を両立させることで,BQは必要な評価回数を大幅に削減できることを示す。
論文 参考訳(メタデータ) (2021-02-12T17:38:04Z) - Provable Model-based Nonlinear Bandit and Reinforcement Learning: Shelve
Optimism, Embrace Virtual Curvature [61.22680308681648]
決定論的報酬を有する1層ニューラルネットバンディットにおいても,グローバル収束は統計的に難解であることを示す。
非線形バンディットとRLの両方に対して,オンラインモデル学習者による仮想アセンジ(Virtual Ascent with Online Model Learner)というモデルベースアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-08T12:41:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。