An Artificial Intelligence (AI) workflow for catalyst design and
optimization
- URL: http://arxiv.org/abs/2402.04557v1
- Date: Wed, 7 Feb 2024 03:25:08 GMT
- Title: An Artificial Intelligence (AI) workflow for catalyst design and
optimization
- Authors: Nung Siong Lai, Yi Shen Tew, Xialin Zhong, Jun Yin, Jiali Li, Binhang
Yan, Xiaonan Wang
- Abstract summary: This study proposes an innovative Artificial Intelligence (AI) workflow that integrates Large Language Models (LLMs), Bayesian optimization, and an active learning loop.
Our methodology combines advanced language understanding with robust optimization strategies, effectively translating knowledge extracted from diverse literature into actionable parameters.
The results underscore the workflow's ability to streamline the catalyst development process, offering a swift, resource-efficient, and high-precision alternative to conventional methods.
- Score: 4.192356938537922
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: In the pursuit of novel catalyst development to address pressing
environmental concerns and energy demand, conventional design and optimization
methods often fall short due to the complexity and vastness of the catalyst
parameter space. The advent of Machine Learning (ML) has ushered in a new era
in the field of catalyst optimization, offering potential solutions to the
shortcomings of traditional techniques. However, existing methods fail to
effectively harness the wealth of information contained within the burgeoning
body of scientific literature on catalyst synthesis. To address this gap, this
study proposes an innovative Artificial Intelligence (AI) workflow that
integrates Large Language Models (LLMs), Bayesian optimization, and an active
learning loop to expedite and enhance catalyst optimization. Our methodology
combines advanced language understanding with robust optimization strategies,
effectively translating knowledge extracted from diverse literature into
actionable parameters for practical experimentation and optimization. In this
article, we demonstrate the application of this AI workflow in the optimization
of catalyst synthesis for ammonia production. The results underscore the
workflow's ability to streamline the catalyst development process, offering a
swift, resource-efficient, and high-precision alternative to conventional
methods.
Related papers
- Accelerated AI Inference via Dynamic Execution Methods [0.562479170374811]
We focus on Dynamic Execution techniques that optimize the computation flow based on input.
The techniques discussed include early exit from deep networks, speculative sampling for language models, and adaptive steps for diffusion models.
Experimental results demonstrate that these dynamic approaches can significantly improve latency and throughput without compromising quality.
arXiv Detail & Related papers (2024-10-30T12:49:23Z) - Inference Optimization of Foundation Models on AI Accelerators [68.24450520773688]
Powerful foundation models, including large language models (LLMs), with Transformer architectures have ushered in a new era of Generative AI.
As the number of model parameters reaches to hundreds of billions, their deployment incurs prohibitive inference costs and high latency in real-world scenarios.
This tutorial offers a comprehensive discussion on complementary inference optimization techniques using AI accelerators.
arXiv Detail & Related papers (2024-07-12T09:24:34Z) - A Machine Learning and Explainable AI Framework Tailored for Unbalanced Experimental Catalyst Discovery [10.92613600218535]
We introduce a robust machine learning and explainable AI (XAI) framework to accurately classify the catalytic yield of various compositions.
This framework combines a series of ML practices designed to handle the scarcity and imbalance of catalyst data.
We believe that such insights can assist chemists in the development and identification of novel catalysts with superior performance.
arXiv Detail & Related papers (2024-07-10T13:09:53Z) - Leveraging Data Mining, Active Learning, and Domain Adaptation in a Multi-Stage, Machine Learning-Driven Approach for the Efficient Discovery of Advanced Acidic Oxygen Evolution Electrocatalysts [10.839705761909709]
This study introduces a novel, multi-stage machine learning (ML) approach to streamline the discovery and optimization of complex multi-metallic catalysts.
Our method integrates data mining, active learning, and domain adaptation throughout the materials discovery process.
arXiv Detail & Related papers (2024-07-05T22:14:55Z) - Efficiency optimization of large-scale language models based on deep learning in natural language processing tasks [6.596361762662328]
Internal structure and operation mechanism of large-scale language models are analyzed theoretically.
We evaluate the contribution of adaptive optimization algorithms (such as AdamW), massively parallel computing techniques, and mixed precision training strategies.
arXiv Detail & Related papers (2024-05-20T00:10:00Z) - Adaptive Catalyst Discovery Using Multicriteria Bayesian Optimization with Representation Learning [17.00084254889438]
High-performance catalysts are crucial for sustainable energy conversion and human health.
The discovery of catalysts faces challenges due to the absence of efficient approaches to navigating vast and high-dimensional structure and composition spaces.
arXiv Detail & Related papers (2024-04-18T18:11:06Z) - Unleashing the Potential of Large Language Models as Prompt Optimizers: An Analogical Analysis with Gradient-based Model Optimizers [108.72225067368592]
We propose a novel perspective to investigate the design of large language models (LLMs)-based prompts.
We identify two pivotal factors in model parameter learning: update direction and update method.
In particular, we borrow the theoretical framework and learning methods from gradient-based optimization to design improved strategies.
arXiv Detail & Related papers (2024-02-27T15:05:32Z) - Enhanced Bayesian Optimization via Preferential Modeling of Abstract
Properties [49.351577714596544]
We propose a human-AI collaborative Bayesian framework to incorporate expert preferences about unmeasured abstract properties into surrogate modeling.
We provide an efficient strategy that can also handle any incorrect/misleading expert bias in preferential judgments.
arXiv Detail & Related papers (2024-02-27T09:23:13Z) - Machine Learning Insides OptVerse AI Solver: Design Principles and
Applications [74.67495900436728]
We present a comprehensive study on the integration of machine learning (ML) techniques into Huawei Cloud's OptVerse AI solver.
We showcase our methods for generating complex SAT and MILP instances utilizing generative models that mirror multifaceted structures of real-world problem.
We detail the incorporation of state-of-the-art parameter tuning algorithms which markedly elevate solver performance.
arXiv Detail & Related papers (2024-01-11T15:02:15Z) - When Parameter-efficient Tuning Meets General-purpose Vision-language
Models [65.19127815275307]
PETAL revolutionizes the training process by requiring only 0.5% of the total parameters, achieved through a unique mode approximation technique.
Our experiments reveal that PETAL not only outperforms current state-of-the-art methods in most scenarios but also surpasses full fine-tuning models in effectiveness.
arXiv Detail & Related papers (2023-12-16T17:13:08Z) - An Empirical Evaluation of Zeroth-Order Optimization Methods on
AI-driven Molecule Optimization [78.36413169647408]
We study the effectiveness of various ZO optimization methods for optimizing molecular objectives.
We show the advantages of ZO sign-based gradient descent (ZO-signGD)
We demonstrate the potential effectiveness of ZO optimization methods on widely used benchmark tasks from the Guacamol suite.
arXiv Detail & Related papers (2022-10-27T01:58:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.