論文の概要: Closing the Gap Between SGP4 and High-Precision Propagation via
Differentiable Programming
- arxiv url: http://arxiv.org/abs/2402.04830v4
- Date: Thu, 7 Mar 2024 11:56:15 GMT
- ステータス: 処理完了
- システム内更新日: 2024-03-08 16:54:31.472027
- Title: Closing the Gap Between SGP4 and High-Precision Propagation via
Differentiable Programming
- Title(参考訳): 微分プログラミングによるSGP4と高精度伝播のギャップの解消
- Authors: Giacomo Acciarini, At{\i}l{\i}m G\"une\c{s} Baydin, Dario Izzo
- Abstract要約: 本研究では、PyTorchを用いて実装されたSGP4の新しい微分可能バージョンであるdSGP4を提案する。
SGP4を識別可能にすることで、dSGP4は宇宙船の軌道決定を含む様々な宇宙関連の応用を促進する。
本稿では,ニューラルネットを軌道伝搬器に統合した新しい軌道伝搬パラダイムML-dSGP4を提案する。
- 参考スコア(独自算出の注目度): 5.644764266426344
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The Simplified General Perturbations 4 (SGP4) orbital propagation method is
widely used for predicting the positions and velocities of Earth-orbiting
objects rapidly and reliably. Despite continuous refinement, SGP models still
lack the precision of numerical propagators, which offer significantly smaller
errors. This study presents dSGP4, a novel differentiable version of SGP4
implemented using PyTorch. By making SGP4 differentiable, dSGP4 facilitates
various space-related applications, including spacecraft orbit determination,
state conversion, covariance transformation, state transition matrix
computation, and covariance propagation. Additionally, dSGP4's PyTorch
implementation allows for embarrassingly parallel orbital propagation across
batches of Two-Line Element Sets (TLEs), leveraging the computational power of
CPUs, GPUs, and advanced hardware for distributed prediction of satellite
positions at future times. Furthermore, dSGP4's differentiability enables
integration with modern machine learning techniques. Thus, we propose a novel
orbital propagation paradigm, ML-dSGP4, where neural networks are integrated
into the orbital propagator. Through stochastic gradient descent, this combined
model's inputs, outputs, and parameters can be iteratively refined, surpassing
SGP4's precision. Neural networks act as identity operators by default,
adhering to SGP4's behavior. However, dSGP4's differentiability allows
fine-tuning with ephemeris data, enhancing precision while maintaining
computational speed. This empowers satellite operators and researchers to train
the model using specific ephemeris or high-precision numerical propagation
data, significantly advancing orbital prediction capabilities.
- Abstract(参考訳): SGP4(Simplified General Perturbations 4)軌道伝搬法は、地球周回物体の位置と速度を迅速かつ確実に予測するために広く用いられている。
連続的な改良にもかかわらず、SGPモデルは数値プロパゲータの精度に欠けており、誤差は大幅に小さい。
本研究では、PyTorchを用いて実装されたSGP4の新しい微分可能バージョンであるdSGP4を提案する。
SGP4を微分可能にすることで、dSGP4は、宇宙船の軌道決定、状態変換、共分散変換、状態遷移行列計算、共分散伝播など、様々な宇宙関連の応用を促進する。
さらに、dsgp4のpytorch実装は、2ライン要素セット(tles)のバッチをまたいだ恥ずかしいほど並列な軌道伝播を可能にし、将来の衛星位置の分散予測にcpu、gpu、高度なハードウェアの計算能力を活用する。
さらに、dSGP4の微分性は、現代の機械学習技術との統合を可能にする。
そこで我々は,ニューラルネットを軌道伝搬器に統合した新しい軌道伝搬パラダイムML-dSGP4を提案する。
確率勾配降下により、この合成モデルの入力、出力、パラメータは反復的に洗練され、SGP4の精度を超える。
ニューラルネットワークはデフォルトでアイデンティティ演算子として機能し、SGP4の振舞いに固執する。
しかし、dSGP4の微分性は、エフェメリスデータによる微調整を可能にし、計算速度を維持しながら精度を向上させる。
これにより、衛星オペレーターや研究者は、特定のエフェミリや高精度数値伝播データを用いてモデルを訓練し、軌道予測能力を大幅に向上させることができる。
関連論文リスト
- A Statistical Machine Learning Approach for Adapting Reduced-Order Models using Projected Gaussian Process [4.658371840624581]
適切な直交分解(POD)は、低次元の部分空間にまたがる最適基底モードを計算する。
本稿では,予測ガウス過程 (pGP) を提案し,PODベースを教師付き統計学習問題として適用する問題を定式化する。
パラメータ変化に対してPODベースを適用するために提案したpGPの利点を示す数値的な例を示す。
論文 参考訳(メタデータ) (2024-10-18T00:02:43Z) - Parametric Taylor series based latent dynamics identification neural networks [0.3139093405260182]
非線形力学の新しい潜在的同定法であるP-TLDINetを導入する。
これはテイラー級数展開とResNetsに基づく新しいニューラルネットワーク構造に依存している。
論文 参考訳(メタデータ) (2024-10-05T15:10:32Z) - State-Free Inference of State-Space Models: The Transfer Function Approach [132.83348321603205]
状態のない推論では、状態サイズが大きくなると大きなメモリや計算コストは発生しない。
提案した周波数領域転送関数のパラメトリゼーション特性を用いてこれを実現する。
長い畳み込みハイエナベースライン上での言語モデリングにおける難易度の改善を報告した。
論文 参考訳(メタデータ) (2024-05-10T00:06:02Z) - Geometry-Informed Neural Operator for Large-Scale 3D PDEs [76.06115572844882]
大規模偏微分方程式の解演算子を学習するために,幾何インフォームド・ニューラル演算子(GINO)を提案する。
我々はGINOを訓練し、わずか500点のデータポイントで車両表面の圧力を予測することに成功した。
論文 参考訳(メタデータ) (2023-09-01T16:59:21Z) - Improving Path Planning Performance through Multimodal Generative Models
with Local Critics [1.3706331473063877]
本稿では,障害物のある未知のシーンにおける経路計画タスクを高速化する新しい手法を提案する。
自由条件構成空間の分布を近似するために,Wasserstein Generative Adversarial Networks (WGANs) と Gradient Penalty (GP) を用いる。
実験の結果,WGAN-GPで準最適経路を生成しながら,未知のシーンでの経路計画タスクを高速化する有望な結果が得られた。
論文 参考訳(メタデータ) (2023-06-15T19:51:35Z) - Machine learning in and out of equilibrium [58.88325379746631]
我々の研究は、統計物理学から適応したフォッカー・プランク法を用いて、これらの平行線を探索する。
我々は特に、従来のSGDでは平衡が切れている長期的限界におけるシステムの定常状態に焦点を当てる。
本稿では,ミニバッチの置き換えを伴わない新しいランゲヴィンダイナミクス(SGLD)を提案する。
論文 参考訳(メタデータ) (2023-06-06T09:12:49Z) - 4D Panoptic Segmentation as Invariant and Equivariant Field Prediction [48.57732508537554]
我々は4次元パノプティカルセグメンテーションのための回転同変ニューラルネットワークを開発した。
その結果,同種でないモデルに比べて計算コストが低いモデルの方が精度が高いことがわかった。
本手法は,新しい最先端性能を設定し,セマンティックKITTITI 4Dパネルにおいて第1位を獲得している。
論文 参考訳(メタデータ) (2023-03-28T00:20:37Z) - Revisiting Active Sets for Gaussian Process Decoders [0.0]
我々は最近発見されたクロスバリデーションのリンクに基づいて,ログマージ可能性の新たな推定法を開発した。
結果の能動集合 (SAS) 近似がGPデコーダトレーニングの堅牢性を大幅に向上することを示す。
論文 参考訳(メタデータ) (2022-09-10T10:49:31Z) - Incremental Ensemble Gaussian Processes [53.3291389385672]
本稿では,EGPメタラーナーがGP学習者のインクリメンタルアンサンブル(IE-) GPフレームワークを提案し,それぞれが所定のカーネル辞書に属するユニークなカーネルを持つ。
各GP専門家は、ランダムな特徴ベースの近似を利用してオンライン予測とモデル更新を行い、そのスケーラビリティを生かし、EGPメタラーナーはデータ適応重みを生かし、熟練者ごとの予測を合成する。
新たなIE-GPは、EGPメタラーナーおよび各GP学習者内における構造化力学をモデル化することにより、時間変化関数に対応するように一般化される。
論文 参考訳(メタデータ) (2021-10-13T15:11:25Z) - Gaussian Process Subspace Regression for Model Reduction [7.41244589428771]
部分空間値関数はパラメトリック・リダクション・オーダー・モデリング(PROM)を含む幅広い問題に現れる。
PROM では、各パラメータ点は、大きな系行列のペトロフ・ガレルキン射影に使用される部分空間に関連付けることができる。
本稿では,サブスペース予測のための新しいベイズ非モデルとして,ガウス過程部分空間回帰(GPS)モデルを提案する。
論文 参考訳(メタデータ) (2021-07-09T20:41:23Z) - Why Approximate Matrix Square Root Outperforms Accurate SVD in Global
Covariance Pooling? [59.820507600960745]
本稿では,前方通過のSVDと後方伝播のPad'e近似を用いて勾配を計算する新しいGCPメタ層を提案する。
提案するメタレイヤは,さまざまなCNNモデルに統合され,大規模および微細なデータセット上で最先端のパフォーマンスを実現する。
論文 参考訳(メタデータ) (2021-05-06T08:03:45Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。