論文の概要: Optimizing Variational Quantum Algorithms with qBang: Efficiently Interweaving Metric and Momentum to Navigate Flat Energy Landscapes
- arxiv url: http://arxiv.org/abs/2304.13882v2
- Date: Thu, 4 Apr 2024 08:21:20 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-05 20:42:13.252466
- Title: Optimizing Variational Quantum Algorithms with qBang: Efficiently Interweaving Metric and Momentum to Navigate Flat Energy Landscapes
- Title(参考訳): qBangを用いた変分量子アルゴリズムの最適化:フラットエネルギーランドスケープの効率的なインターウィービング方法とモーメント
- Authors: David Fitzek, Robert S. Jonsson, Werner Dobrautz, Christian Schäfer,
- Abstract要約: 変分量子アルゴリズム(VQA)は、現在の量子コンピューティングインフラを利用するための有望なアプローチである。
本稿では,量子ブロイデン適応型自然勾配(qBang)アプローチを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Variational quantum algorithms (VQAs) represent a promising approach to utilizing current quantum computing infrastructures. VQAs are based on a parameterized quantum circuit optimized in a closed loop via a classical algorithm. This hybrid approach reduces the quantum processing unit load but comes at the cost of a classical optimization that can feature a flat energy landscape. Existing optimization techniques, including either imaginary time-propagation, natural gradient, or momentum-based approaches, are promising candidates but place either a significant burden on the quantum device or suffer frequently from slow convergence. In this work, we propose the quantum Broyden adaptive natural gradient (qBang) approach, a novel optimizer that aims to distill the best aspects of existing approaches. By employing the Broyden approach to approximate updates in the Fisher information matrix and combining it with a momentum-based algorithm, qBang reduces quantum-resource requirements while performing better than more resource-demanding alternatives. Benchmarks for the barren plateau, quantum chemistry, and the max-cut problem demonstrate an overall stable performance with a clear improvement over existing techniques in the case of flat (but not exponentially flat) optimization landscapes. qBang introduces a new development strategy for gradient-based VQAs with a plethora of possible improvements.
- Abstract(参考訳): 変分量子アルゴリズム(VQA)は、現在の量子コンピューティングインフラを利用するための有望なアプローチである。
VQAは古典的アルゴリズムによって閉じたループに最適化されたパラメータ化量子回路に基づいている。
このハイブリッドアプローチは、量子処理ユニットの負荷を減らすが、フラットなエネルギーランドスケープを特徴とする古典的な最適化のコストがかかる。
既存の最適化手法(想像的時間プロパゲーション、自然勾配、運動量に基づくアプローチなど)は有望な候補であるが、量子デバイスに重大な負担をかけるか、しばしば収束が遅くなる。
本研究では,量子ブロイデン適応型自然勾配(qBang)アプローチを提案する。
フィッシャー情報行列の近似更新にブロイデンのアプローチを採用し、それをモーメントベースのアルゴリズムと組み合わせることで、qBangは、より多くのリソース要求の代替手段よりも優れたパフォーマンスを保ちながら、量子リソース要求を削減できる。
バレン台地、量子化学、最大カット問題のベンチマークは、フラットな(指数関数的に平坦ではない)最適化ランドスケープにおいて、既存の技術よりも明らかに改善され、全体的な安定した性能を示す。
qBangは、グラデーションベースのVQAの新しい開発戦略を導入し、多くの改善が考えられる。
関連論文リスト
- A Monte Carlo Tree Search approach to QAOA: finding a needle in the haystack [0.0]
変分量子アルゴリズム(VQA)は、短期量子ハードウェアの限られた能力に対応するために設計された、ハイブリッド量子古典法の一種である。
本稿では,正規パラメータパターンの活用が決定木構造に深く影響し,フレキシブルかつノイズ耐性のある最適化戦略を可能にすることを示す。
論文 参考訳(メタデータ) (2024-08-22T18:00:02Z) - Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Line Search Strategy for Navigating through Barren Plateaus in Quantum Circuit Training [0.0]
変分量子アルゴリズムは、短期デバイスにおける量子優位性を示すための有望な候補と見なされている。
本研究では,回路トレーニングにおけるバレンプラトー問題(BP)の悪影響を軽減するために,新しい最適化手法を提案する。
我々は16ドルキュービットと15,000ドルのエンタングゲートからなる量子回路に最適化戦略を適用した。
論文 参考訳(メタデータ) (2024-02-07T20:06:29Z) - Bayesian Optimization for QAOA [0.0]
量子回路を最適化するためのベイズ最適化手法を提案する。
提案手法により,量子回路の呼び出し回数を大幅に削減できることを示す。
提案手法は,ノイズの多い中間規模量子デバイス上でのQAOAのハイブリッド特性を活用するための,有望なフレームワークであることが示唆された。
論文 参考訳(メタデータ) (2022-09-08T13:59:47Z) - Prog-QAOA: Framework for resource-efficient quantum optimization through classical programs [0.0]
現在の量子最適化アルゴリズムでは、元の問題を二進最適化問題として表現し、量子デバイスに適した等価イジングモデルに変換する必要がある。
目的関数を計算し、制約を認証するための古典的プログラムを設計し、後に量子回路にコンパイルする。
その結果,量子近似最適化アルゴリズム (QAOA) が新たに導入された。
論文 参考訳(メタデータ) (2022-09-07T18:01:01Z) - Surviving The Barren Plateau in Variational Quantum Circuits with
Bayesian Learning Initialization [0.0]
変分量子古典ハイブリッドアルゴリズムは、近い将来に量子コンピュータの実用的な問題を解くための有望な戦略と見なされている。
本稿では,ベイズ空間における有望な領域を特定するために勾配を用いた高速・スローアルゴリズムを提案する。
本研究は, 量子化学, 最適化, 量子シミュレーション問題における変分量子アルゴリズムの応用に近づいたものである。
論文 参考訳(メタデータ) (2022-03-04T17:48:57Z) - Quadratic Unconstrained Binary Optimisation via Quantum-Inspired
Annealing [58.720142291102135]
本稿では,2次非制約二項最適化の事例に対する近似解を求める古典的アルゴリズムを提案する。
我々は、チューニング可能な硬さと植え付けソリューションを備えた大規模問題インスタンスに対して、我々のアプローチをベンチマークする。
論文 参考訳(メタデータ) (2021-08-18T09:26:17Z) - Variational Quantum Optimization with Multi-Basis Encodings [62.72309460291971]
マルチバスグラフ複雑性と非線形活性化関数の2つの革新の恩恵を受ける新しい変分量子アルゴリズムを導入する。
その結果,最適化性能が向上し,有効景観が2つ向上し,測定の進歩が減少した。
論文 参考訳(メタデータ) (2021-06-24T20:16:02Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Space-efficient binary optimization for variational computing [68.8204255655161]
本研究では,トラベリングセールスマン問題に必要なキュービット数を大幅に削減できることを示す。
また、量子ビット効率と回路深さ効率のモデルを円滑に補間する符号化方式を提案する。
論文 参考訳(メタデータ) (2020-09-15T18:17:27Z) - Cross Entropy Hyperparameter Optimization for Constrained Problem
Hamiltonians Applied to QAOA [68.11912614360878]
QAOA(Quantum Approximate Optimization Algorithm)のようなハイブリッド量子古典アルゴリズムは、短期量子コンピュータを実用的に活用するための最も奨励的なアプローチの1つである。
このようなアルゴリズムは通常変分形式で実装され、古典的な最適化法と量子機械を組み合わせて最適化問題の優れた解を求める。
本研究では,クロスエントロピー法を用いてランドスケープを形作り,古典的パラメータがより容易により良いパラメータを発見でき,その結果,性能が向上することを示す。
論文 参考訳(メタデータ) (2020-03-11T13:52:41Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。