論文の概要: JailbreakRadar: Comprehensive Assessment of Jailbreak Attacks Against LLMs
- arxiv url: http://arxiv.org/abs/2402.05668v3
- Date: Mon, 26 May 2025 12:56:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-28 14:37:18.079606
- Title: JailbreakRadar: Comprehensive Assessment of Jailbreak Attacks Against LLMs
- Title(参考訳): JailbreakRadar: LLMに対するJailbreak攻撃の包括的評価
- Authors: Junjie Chu, Yugeng Liu, Ziqing Yang, Xinyue Shen, Michael Backes, Yang Zhang,
- Abstract要約: 様々なジェイルブレイク攻撃の大規模評価を行う。
我々は17の代表的なジェイルブレイク攻撃を収集し、それらの特徴を要約し、新しいジェイルブレイク攻撃分類を確立した。
- 参考スコア(独自算出の注目度): 26.981225219312627
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Jailbreak attacks aim to bypass the LLMs' safeguards. While researchers have proposed different jailbreak attacks in depth, they have done so in isolation -- either with unaligned settings or comparing a limited range of methods. To fill this gap, we present a large-scale evaluation of various jailbreak attacks. We collect 17 representative jailbreak attacks, summarize their features, and establish a novel jailbreak attack taxonomy. Then we conduct comprehensive measurement and ablation studies across nine aligned LLMs on 160 forbidden questions from 16 violation categories. Also, we test jailbreak attacks under eight advanced defenses. Based on our taxonomy and experiments, we identify some important patterns, such as heuristic-based attacks could achieve high attack success rates but are easy to mitigate by defenses, causing low practicality. Our study offers valuable insights for future research on jailbreak attacks and defenses. We hope our work could help the community avoid incremental work and serve as an effective benchmark tool for practitioners.
- Abstract(参考訳): ジェイルブレイク攻撃はLLMの保護を回避しようとしている。
研究者たちは、異なるジェイルブレイク攻撃を深く提案しているが、それらは独立して実施されている。
このギャップを埋めるために,様々なジェイルブレイク攻撃の大規模評価を行う。
我々は17の代表的なジェイルブレイク攻撃を収集し、それらの特徴を要約し、新しいジェイルブレイク攻撃分類を確立した。
次に、16の違反カテゴリからの160の質問に対して、9つのLCMの総合的測定およびアブレーション研究を行った。
また、8つの先進的な防御の下で、ジェイルブレイク攻撃をテストした。
我々の分類と実験に基づいて、ヒューリスティックベースの攻撃が高い攻撃成功率を達成することができるが、防御によって緩和しやすく、実用性が低いなど、いくつかの重要なパターンを特定した。
我々の研究は、脱獄攻撃と防衛に関する将来の研究に貴重な洞察を与えてくれる。
私たちの仕事は、コミュニティが漸進的な作業を避け、実践者にとって効果的なベンチマークツールになることを期待しています。
関連論文リスト
- Layer-Level Self-Exposure and Patch: Affirmative Token Mitigation for Jailbreak Attack Defense [55.77152277982117]
私たちは、jailbreak攻撃から防御するために設計された方法であるLayer-AdvPatcherを紹介します。
私たちは、自己拡張データセットを通じて、大規模言語モデル内の特定のレイヤにパッチを適用するために、未学習の戦略を使用します。
我々の枠組みは、脱獄攻撃の有害性と攻撃の成功率を減らす。
論文 参考訳(メタデータ) (2025-01-05T19:06:03Z) - Shaping the Safety Boundaries: Understanding and Defending Against Jailbreaks in Large Language Models [59.25318174362368]
大規模言語モデル(LLM)におけるジェイルブレークは、LLMを騙して有害なテキストを生成するというセキュリティ上の問題である。
我々は7つの異なるジェイルブレイク法を詳細に分析し、不一致が不十分な観察サンプルから生じることを確認した。
安全境界内でのアクティベーションを適応的に制限する「textbfActivation Boundary Defense (ABD)」という新しい防衛法を提案する。
論文 参考訳(メタデータ) (2024-12-22T14:18:39Z) - Immune: Improving Safety Against Jailbreaks in Multi-modal LLMs via Inference-Time Alignment [97.38766396447369]
訓練時安全アライメントにもかかわらず、Multimodal Large Language Models (MLLM) はジェイルブレイク攻撃に対して脆弱である。
我々は,ジェイルブレイク攻撃に対する防御のために,制御復号化による安全な報酬モデルを活用する推論時防御フレームワークImmuneを提案する。
論文 参考訳(メタデータ) (2024-11-27T19:00:10Z) - Rapid Response: Mitigating LLM Jailbreaks with a Few Examples [13.841146655178585]
我々は,少数の攻撃を観測した後に,脱獄のクラス全体をブロックするために,迅速な応答手法を開発した。
我々は5つの迅速応答法を評価し,それぞれがジェイルブレイク増殖を利用した。
我々の最強の方法は、ジェイルブレイクの非分配セットで240以上、アウト・オブ・ディストリビューションセットで15以上、攻撃成功率で240以上削減する。
論文 参考訳(メタデータ) (2024-11-12T02:44:49Z) - SQL Injection Jailbreak: a structural disaster of large language models [71.55108680517422]
LLMによる入力プロンプトの構築を利用して、ユーザプロンプトにジェイルブレイク情報を注入する新しいジェイルブレイク手法を提案する。
提案手法は,AdvBench の文脈でよく知られた5つのオープンソース LLM に対する攻撃成功率を約100% 達成する。
論文 参考訳(メタデータ) (2024-11-03T13:36:34Z) - What Features in Prompts Jailbreak LLMs? Investigating the Mechanisms Behind Attacks [3.0700566896646047]
異なるジェイルブレイク手法が、異なる非線形特徴を介してプロンプトで動作することを示す。
これらの機械的ジェイルブレイクは、トレーニングされた35のテクニックのうち34つよりも確実にGemma-7B-ITをジェイルブレイクすることができる。
論文 参考訳(メタデータ) (2024-11-02T17:29:47Z) - Transferable Ensemble Black-box Jailbreak Attacks on Large Language Models [0.0]
我々は,様々なLSM-as-Attackerメソッドを組み込んだ新しいブラックボックス・ジェイルブレイク攻撃フレームワークを提案する。
本手法は,既存のジェイルブレイク研究と実践から得られた3つの重要な知見に基づいて設計されている。
論文 参考訳(メタデータ) (2024-10-31T01:55:33Z) - EnJa: Ensemble Jailbreak on Large Language Models [69.13666224876408]
大きな言語モデル(LLM)は、安全クリティカルなアプリケーションにますますデプロイされている。
LLMは、悪質なプロンプトを慎重に作り、ポリシーに違反するコンテンツを生成することで、まだジェイルブレイクされる可能性がある。
本稿では,プロンプトレベルのジェイルブレイクを用いて有害な命令を隠蔽し,グラデーションベースの攻撃で攻撃成功率を高め,テンプレートベースのコネクタを介して2種類のジェイルブレイク攻撃を接続する新しいEnJa攻撃を提案する。
論文 参考訳(メタデータ) (2024-08-07T07:46:08Z) - Figure it Out: Analyzing-based Jailbreak Attack on Large Language Models [21.252514293436437]
大規模言語モデル(LLM)に対するジェイルブレイク攻撃に対する分析ベースジェイルブレイク(ABJ)を提案する。
ABJはGPT-4-turbo-0409上で94.8%の攻撃成功率(ASR)と1.06の攻撃効率(AE)を達成する。
論文 参考訳(メタデータ) (2024-07-23T06:14:41Z) - Virtual Context: Enhancing Jailbreak Attacks with Special Token Injection [54.05862550647966]
本稿では、以前LLMセキュリティで見過ごされていた特別なトークンを活用して、ジェイルブレイク攻撃を改善する仮想コンテキストを提案する。
総合的な評価によると、仮想コンテキストによるジェイルブレイク攻撃は、4つの広く使われているジェイルブレイク手法の成功率を約40%向上させることができる。
論文 参考訳(メタデータ) (2024-06-28T11:35:54Z) - Bag of Tricks: Benchmarking of Jailbreak Attacks on LLMs [13.317364896194903]
大規模言語モデル(LLM)は、ゼロショット方式で複雑なタスクを実行する上で重要な機能を示している。
LLMはジェイルブレイク攻撃の影響を受けやすく、有害な出力を生成するために操作することができる。
論文 参考訳(メタデータ) (2024-06-13T17:01:40Z) - JailbreakEval: An Integrated Toolkit for Evaluating Jailbreak Attempts Against Large Language Models [21.854909839996612]
ジェイルブレイク攻撃は、有害な応答を生成するために大規模言語モデル(LLM)を誘導する。
ジェイルブレイクの評価には合意がない。
JailbreakEvalは、jailbreakの試みを評価するツールキットである。
論文 参考訳(メタデータ) (2024-06-13T16:59:43Z) - EasyJailbreak: A Unified Framework for Jailbreaking Large Language Models [53.87416566981008]
本稿では,大規模言語モデル(LLM)に対するジェイルブレイク攻撃の構築と評価を容易にする統合フレームワークであるEasyJailbreakを紹介する。
Selector、Mutator、Constraint、Evaluatorの4つのコンポーネントを使ってJailbreak攻撃を構築する。
10の異なるLSMで検証した結果、さまざまなジェイルブレイク攻撃で平均60%の侵入確率で重大な脆弱性が判明した。
論文 参考訳(メタデータ) (2024-03-18T18:39:53Z) - A Wolf in Sheep's Clothing: Generalized Nested Jailbreak Prompts can Fool Large Language Models Easily [51.63085197162279]
大きな言語モデル(LLM)は有用で安全な応答を提供するように設計されている。
ジェイルブレイク」と呼ばれる 敵のプロンプトは 保護を回避できる
有効なジェイルブレイクプロンプトを生成するためにLLM自体を活用する自動フレームワークであるReNeLLMを提案する。
論文 参考訳(メタデータ) (2023-11-14T16:02:16Z) - Jailbreaking Black Box Large Language Models in Twenty Queries [97.29563503097995]
大規模言語モデル(LLM)は、敵のジェイルブレイクに対して脆弱である。
LLMへのブラックボックスアクセスのみのセマンティックジェイルブレイクを生成するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-10-12T15:38:28Z) - "Do Anything Now": Characterizing and Evaluating In-The-Wild Jailbreak Prompts on Large Language Models [50.22128133926407]
我々は2022年12月から2023年12月までの1,405件の脱獄プロンプトを包括的に分析する。
131のjailbreakコミュニティを特定し,Jailbreakプロンプトの特徴とその主要な攻撃戦略を明らかにする。
また,ChatGPT (GPT-3.5) と GPT-4 の攻撃成功率 0.95 を達成できる5つの有効なジェイルブレイクプロンプトを同定した。
論文 参考訳(メタデータ) (2023-08-07T16:55:20Z) - Tricking LLMs into Disobedience: Formalizing, Analyzing, and Detecting Jailbreaks [12.540530764250812]
我々は、既知の(そして可能な)ジェイルブレイクの形式主義と分類法を提案する。
私たちは3700のjailbreakプロンプトにまたがるモデル出力のデータセットを4つのタスクでリリースしています。
論文 参考訳(メタデータ) (2023-05-24T09:57:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。