Anomalous thermal relaxation and pump-probe spectroscopy of 2D
topologically ordered systems
- URL: http://arxiv.org/abs/2402.06484v1
- Date: Wed, 7 Feb 2024 14:40:30 GMT
- Title: Anomalous thermal relaxation and pump-probe spectroscopy of 2D
topologically ordered systems
- Authors: Max McGinley, Michele Fava, S. A. Parameswaran
- Abstract summary: We study the behaviour of linear and nonlinear spectroscopic quantities in two-dimensional topologically ordered systems.
We highlight the role that braiding phases between anyons have on the dynamics of quasiparticles.
Results apply to any Abelian or non-Abelian topological phase in two-dimensions.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the behaviour of linear and nonlinear spectroscopic quantities in
two-dimensional topologically ordered systems, which host anyonic excitations
exhibiting fractional statistics. We highlight the role that braiding phases
between anyons have on the dynamics of such quasiparticles, which as we show
dictates the behaviour of both linear response coefficients at finite
temperatures, as well as nonlinear pump-probe response coefficients. These
quantities, which act as probes of temporal correlations in the system, are
shown to obey distinctive universal forms at sufficiently long timescales. As
well as providing an experimentally measurable fingerprint of anyonic
statistics, the universal behaviour that we find also demonstrates anomalously
fast thermal relaxation: correlation functions decay as a `squished
exponential' $C(t) \sim \exp(-[t/\tau]^{3/2})$ at long times. We attribute this
unusual asymptotic form to the nonlocal nature of interactions between anyons,
which allows relaxation to occur much faster than in systems with
quasiparticles interacting via local, non-statistical interactions. While our
results apply to any Abelian or non-Abelian topological phase in
two-dimensions, we discuss in particular the implications for candidate quantum
spin liquid materials, wherein the relevant quantities can be measured using
pre-existing time-resolved terahertz-domain spectroscopic techniques.
Related papers
- Measurement-induced transitions for interacting fermions [43.04146484262759]
We develop a field-theoretical framework that provides a unified approach to observables characterizing entanglement and charge fluctuations.
Within this framework, we derive a replicated Keldysh non-linear sigma model (NLSM)
By using the renormalization-group approach for the NLSM, we determine the phase diagram and the scaling of physical observables.
arXiv Detail & Related papers (2024-10-09T18:00:08Z) - Efficiency of Dynamical Decoupling for (Almost) Any Spin-Boson Model [44.99833362998488]
We analytically study the dynamical decoupling of a two-level system coupled with a structured bosonic environment.
We find sufficient conditions under which dynamical decoupling works for such systems.
Our bounds reproduce the correct scaling in various relevant system parameters.
arXiv Detail & Related papers (2024-09-24T04:58:28Z) - Exact asymptotics of long-range quantum correlations in a nonequilibrium steady state [0.0]
We analytically study the scaling of quantum correlation measures on a one-dimensional containing a noninteracting impurity.
We derive the exact form of the subleading logarithmic corrections to the extensive terms of correlation measures.
This echoes the case of equilibrium states, where such logarithmic terms may convey universal information about the physical system.
arXiv Detail & Related papers (2023-10-25T18:00:48Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Signatures of fractional statistics in nonlinear pump-probe spectroscopy [0.0]
We show that the presence of anyons in the excitation spectrum of a two-dimensional system can be inferred from nonlinear spectroscopic quantities.
In magnetic systems, the signal of interest can be measured using currently available terahertz-domain probes.
arXiv Detail & Related papers (2022-10-28T16:28:35Z) - Dynamical detection of mean-field topological phases in an interacting
Chern insulator [11.848843951626527]
We propose a scheme based on quench dynamics to detect the mean-field topological phase diagram of an insulator.
We find two characteristic times $t_s$ and $t_c$ which capture the emergence of dynamical self-consistent particle number density.
The number of mean-field topological phase is determined by the spin polarizations of four Dirac points at the time $t_s$.
arXiv Detail & Related papers (2022-06-22T12:37:15Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Probing particle-particle correlation in harmonic traps with twisted
light [0.0]
We explore the potential of twisted light as a tool to unveil many-body effects in parabolically confined systems.
We demonstrate the ability of the proposed twisted light probe to capture the transition of interacting fermions into a strongly correlated regime.
These features, observed in exact calculations for two electrons, are reproduced in adiabatic Time Dependent Density Functional Theory simulations.
arXiv Detail & Related papers (2021-05-12T16:07:59Z) - Classical Prethermal Phases of Matter [0.0]
We show that prethermal non-equilibrium phases of matter are not restricted to the quantum domain.
We find higher-order as well as fractional discrete time crystals breaking the time-translational symmetry of the drive with unexpectedly large integer as well as fractional periods.
arXiv Detail & Related papers (2021-04-28T18:00:01Z) - Light-matter interactions near photonic Weyl points [68.8204255655161]
Weyl photons appear when two three-dimensional photonic bands with linear dispersion are degenerated at a single momentum point, labeled as Weyl point.
We analyze the dynamics of a single quantum emitter coupled to a Weyl photonic bath as a function of its detuning with respect to the Weyl point.
arXiv Detail & Related papers (2020-12-23T18:51:13Z) - Dynamical solitons and boson fractionalization in cold-atom topological
insulators [110.83289076967895]
We study the $mathbbZ$ Bose-Hubbard model at incommensurate densities.
We show how defects in the $mathbbZ$ field can appear in the ground state, connecting different sectors.
Using a pumping argument, we show that it survives also for finite interactions.
arXiv Detail & Related papers (2020-03-24T17:31:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.