Impact of Dataset Properties on Membership Inference Vulnerability of Deep Transfer Learning
- URL: http://arxiv.org/abs/2402.06674v3
- Date: Mon, 21 Oct 2024 17:19:12 GMT
- Title: Impact of Dataset Properties on Membership Inference Vulnerability of Deep Transfer Learning
- Authors: Marlon Tobaben, Hibiki Ito, Joonas Jälkö, Gauri Pradhan, Yuan He, Antti Honkela,
- Abstract summary: We analyse the relationship between privacy vulnerability and dataset properties, such as examples per class and number of classes.
We derive per-example MIA vulnerability in terms of score distributions and statistics computed from shadow models.
- Score: 8.808963973962278
- License:
- Abstract: We analyse the relationship between privacy vulnerability and dataset properties, such as examples per class and number of classes, when applying two state-of-the-art membership inference attacks (MIAs) to fine-tuned neural networks. We derive per-example MIA vulnerability in terms of score distributions and statistics computed from shadow models. We introduce a simplified model of membership inference and prove that in this model, the logarithm of the difference of true and false positive rates depends linearly on the logarithm of the number of examples per class. We complement the theoretical analysis with empirical analysis by systematically testing the practical privacy vulnerability of fine-tuning large image classification models and obtain the previously derived power law dependence between the number of examples per class in the data and the MIA vulnerability, as measured by true positive rate of the attack at a low false positive rate. Finally, we fit a parametric model of the previously derived form to predict true positive rate based on dataset properties and observe good fit for MIA vulnerability on unseen fine-tuning scenarios.
Related papers
- Equivariance Allows Handling Multiple Nuisance Variables When Analyzing
Pooled Neuroimaging Datasets [53.34152466646884]
In this paper, we show how bringing recent results on equivariant representation learning instantiated on structured spaces together with simple use of classical results on causal inference provides an effective practical solution.
We demonstrate how our model allows dealing with more than one nuisance variable under some assumptions and can enable analysis of pooled scientific datasets in scenarios that would otherwise entail removing a large portion of the samples.
arXiv Detail & Related papers (2022-03-29T04:54:06Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
Empirically, well-chosen regularization schemes dramatically improve the quality of the inferred models.
We consider the particular case of L 2 and L 1 regularizations in the Maximum A Posteriori (MAP) inference of generative pairwise graphical models.
arXiv Detail & Related papers (2021-12-02T14:45:16Z) - Formalizing and Estimating Distribution Inference Risks [11.650381752104298]
We propose a formal and general definition of property inference attacks.
Our results show that inexpensive attacks are as effective as expensive meta-classifier attacks.
We extend the state-of-the-art property inference attack to work on convolutional neural networks.
arXiv Detail & Related papers (2021-09-13T14:54:39Z) - The Interplay Between Implicit Bias and Benign Overfitting in Two-Layer
Linear Networks [51.1848572349154]
neural network models that perfectly fit noisy data can generalize well to unseen test data.
We consider interpolating two-layer linear neural networks trained with gradient flow on the squared loss and derive bounds on the excess risk.
arXiv Detail & Related papers (2021-08-25T22:01:01Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
Prediction credibility measures are fundamental in statistics and machine learning.
These measures should account for the wide variety of models used in practice.
The framework developed in this work expresses the credibility as a risk-fit trade-off.
arXiv Detail & Related papers (2020-11-24T19:52:38Z) - PermuteAttack: Counterfactual Explanation of Machine Learning Credit
Scorecards [0.0]
This paper is a note on new directions and methodologies for validation and explanation of Machine Learning (ML) models employed for retail credit scoring in finance.
Our proposed framework draws motivation from the field of Artificial Intelligence (AI) security and adversarial ML.
arXiv Detail & Related papers (2020-08-24T00:05:13Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - An Investigation of Why Overparameterization Exacerbates Spurious
Correlations [98.3066727301239]
We identify two key properties of the training data that drive this behavior.
We show how the inductive bias of models towards "memorizing" fewer examples can cause over parameterization to hurt.
arXiv Detail & Related papers (2020-05-09T01:59:13Z) - Data and Model Dependencies of Membership Inference Attack [13.951470844348899]
We provide an empirical analysis of the impact of both the data and ML model properties on the vulnerability of ML techniques to MIA.
Our results reveal the relationship between MIA accuracy and properties of the dataset and training model in use.
We propose using those data and model properties as regularizers to protect ML models against MIA.
arXiv Detail & Related papers (2020-02-17T09:35:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.