論文の概要: A Deep Learning Method for Optimal Investment Under Relative Performance
Criteria Among Heterogeneous Agents
- arxiv url: http://arxiv.org/abs/2402.07365v1
- Date: Mon, 12 Feb 2024 01:40:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-13 15:54:57.553719
- Title: A Deep Learning Method for Optimal Investment Under Relative Performance
Criteria Among Heterogeneous Agents
- Title(参考訳): 不均一エージェント間の相対性能基準下での最適投資のための深層学習法
- Authors: Mathieu Lauri\`ere, Ludovic Tangpi, Xuchen Zhou
- Abstract要約: グラフゲームは、重み付けされた相互作用グラフを通して相互作用する多くのプレイヤーとゲームを研究するために導入された。
本稿では,相対的な性能基準下での最適投資を目的としたグラフゲームに着目し,ディープラーニング手法を提案する。
- 参考スコア(独自算出の注目度): 1.03590082373586
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphon games have been introduced to study games with many players who
interact through a weighted graph of interaction. By passing to the limit, a
game with a continuum of players is obtained, in which the interactions are
through a graphon. In this paper, we focus on a graphon game for optimal
investment under relative performance criteria, and we propose a deep learning
method. The method builds upon two key ingredients: first, a characterization
of Nash equilibria by forward-backward stochastic differential equations and,
second, recent advances of machine learning algorithms for stochastic
differential games. We provide numerical experiments on two different financial
models. In each model, we compare the effect of several graphons, which
correspond to different structures of interactions.
- Abstract(参考訳): グラフゲームは、重み付けされた相互作用グラフを通して相互作用する多くのプレイヤーとゲームを研究するために導入された。
限界に渡すことで、プレイヤーの連続体を持つゲームが得られ、その相互作用はグラフェンを介して行われる。
本稿では,相対的な性能基準下での最適投資を目的としたグラフゲームに着目し,深層学習手法を提案する。
この手法は,前向き確率微分方程式によるナッシュ平衡のキャラクタリゼーションと,確率微分ゲームのための機械学習アルゴリズムの最近の進歩の2つの重要な要素に基づいている。
2つの異なる金融モデルに関する数値実験を行う。
各モデルにおいて、相互作用の異なる構造に対応する複数のグラフェンの効果を比較する。
関連論文リスト
- Game Theory Meets Statistical Mechanics in Deep Learning Design [0.06990493129893112]
本稿では,ゲーム理論の原理と統計力学の法則をシームレスに融合する新しいディープ表現を提案する。
単一の学習フレームワーク内で特徴抽出、次元縮小、パターン分類を行う。
論文 参考訳(メタデータ) (2024-10-16T06:02:18Z) - Energy-based Potential Games for Joint Motion Forecasting and Control [0.125828876338076]
この研究は、モーション予測と制御における相互作用モデリングに対処するための数学的枠組みとしてゲーム理論を用いる。
差動ゲーム,最適制御,エネルギーベースモデル間の接続を確立し,提案したエネルギーベースポテンシャルゲーム定式化の下で既存のアプローチをどのように統合できるかを示す。
本稿では,ゲームパラメータ推論のためのニューラルネットワークと,帰納バイアスとして機能するゲーム理論最適化層を組み合わせた,新たなエンドツーエンド学習アプリケーションを提案する。
論文 参考訳(メタデータ) (2023-12-04T11:30:26Z) - Visual Commonsense based Heterogeneous Graph Contrastive Learning [79.22206720896664]
視覚的推論タスクをより良く仕上げるための異種グラフコントラスト学習法を提案する。
本手法はプラグイン・アンド・プレイ方式として設計されており,多種多様な代表手法と迅速かつ容易に組み合わせることができる。
論文 参考訳(メタデータ) (2023-11-11T12:01:18Z) - On a Connection between Differential Games, Optimal Control, and
Energy-based Models for Multi-Agent Interactions [0.13499500088995461]
差分ゲーム,最適制御,エネルギーベースモデルの関連性を示す。
この定式化に基づいて、この研究はエンド・ツー・エンドの学習アプリケーションを導入している。
シミュレーションされた移動ロボット歩行者インタラクションと実世界の自動運転データを用いた実験は、実証的な証拠を提供する。
論文 参考訳(メタデータ) (2023-08-31T08:30:11Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
グラデーションへのアクセスを伴わない連続アクションゲームのナッシュ平衡を近似的に計算する問題について検討する。
ニューラルネットワークを用いてプレイヤーの戦略をモデル化する。
本論文は、制約のない混合戦略と勾配情報のない一般的な連続アクションゲームを解決する最初の方法である。
論文 参考訳(メタデータ) (2022-11-29T05:16:41Z) - Representing Videos as Discriminative Sub-graphs for Action Recognition [165.54738402505194]
ビデオ中の各アクションの識別パターンを表現およびエンコードするためのサブグラフの新たな設計を提案する。
時空グラフとクラスタを各スケールでコンパクトなサブグラフに新たに構築するMUlti-scale Sub-Earn Ling (MUSLE) フレームワークを提案する。
論文 参考訳(メタデータ) (2022-01-11T16:15:25Z) - Learning Graphon Mean Field Games and Approximate Nash Equilibria [33.77849245250632]
本稿では,弱い相互作用を持つグラノン平均場ゲームに対して,離散時間による新たな定式化を提案する。
理論的には、グラノン平均場解の広範かつ厳密な存在と近似特性を与える。
我々は,多くのエージェントを持つ非実現不可能な大密度グラフゲームにおいて,可塑性近似ナッシュ平衡を得ることに成功した。
論文 参考訳(メタデータ) (2021-11-29T16:16:11Z) - TCL: Transformer-based Dynamic Graph Modelling via Contrastive Learning [87.38675639186405]
我々は,動的に進化するグラフを連続的に扱う,TCLと呼ばれる新しいグラフニューラルネットワークアプローチを提案する。
我々の知る限りでは、これは動的グラフ上の表現学習にコントラスト学習を適用する最初の試みである。
論文 参考訳(メタデータ) (2021-05-17T15:33:25Z) - Hawkes Processes on Graphons [85.6759041284472]
我々は、グランガー因果グラフに関連するホークス過程とその変種について研究する。
対応するホークスプロセスを生成し、イベントシーケンスをシミュレートすることができる。
生成した事象列と観測された事象列との間の階層的最適輸送距離を最小化することにより,提案モデルを学習する。
論文 参考訳(メタデータ) (2021-02-04T17:09:50Z) - A Differentiable Newton Euler Algorithm for Multi-body Model Learning [34.558299591341]
我々はニュートン・オイラー方程式を具現化した計算グラフアーキテクチャを動機付けている。
本稿では、制約のない物理的プラウジブルダイナミクスを実現するために使用される仮想パラメータについて述べる。
従来のホワイトボックスシステム同定手法で要求されるキネマティックパラメータは,データから正確に推定可能であることを示す。
論文 参考訳(メタデータ) (2020-10-19T19:30:33Z) - Model-Based Reinforcement Learning for Atari [89.3039240303797]
エージェントがモデルフリーの手法よりも少ないインタラクションでAtariゲームを解くことができることを示す。
本実験は,エージェントと環境間の100kの相互作用の少ないデータ構造における,AtariゲームにおけるSimPLeの評価である。
論文 参考訳(メタデータ) (2019-03-01T15:40:19Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。