Total and Symmetry resolved Entanglement spectra in some Fermionic CFTs from the BCFT approach
- URL: http://arxiv.org/abs/2402.07557v2
- Date: Mon, 23 Sep 2024 16:06:57 GMT
- Title: Total and Symmetry resolved Entanglement spectra in some Fermionic CFTs from the BCFT approach
- Authors: Himanshu Gaur,
- Abstract summary: We study the universal total and symmetry-resolved entanglement spectra for a single interval of some $2$d Fermionic CFTs.
The partition of Hilbert space is achieved by cutting out discs around the entangling boundary points and imposing boundary conditions preserving the extended symmetry under scrutiny.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we study the universal total and symmetry-resolved entanglement spectra for a single interval of some $2$d Fermionic CFTs using the Boundary Conformal Field theory (BCFT) approach. In this approach, the partition of Hilbert space is achieved by cutting out discs around the entangling boundary points and imposing boundary conditions preserving the extended symmetry under scrutiny. The reduced density moments are then related to the BCFT partition functions and are also found to be diagonal in the symmetry charge sectors. In particular, we first study the entanglement spectra of massless Dirac fermion and modular invariant $Z_2$-gauged Dirac fermion by considering the boundary conditions preserving either the axial or the vector $U(1)$ symmetry. The total entanglement spectra of the modular invariant Dirac fermion are shown to match with the compact boson result at the Bose-Fermi duality radius, while for the massless Dirac fermion, it is found that the boundary entropy term doesn't match with the self-dual compact boson. The symmetry-resolved entanglement is found to be the same in all cases, except for the charge spectrum which is dependent on both the symmetry and the theory. We also study the entanglement spectra of $N$ massless Dirac fermions by considering boundary conditions preserving different chiral $U(1)^N$ symmetries. Entanglement spectra are studied for $U(1)^M$ subgroups, where $M\leq N$, by imposing boundary conditions preserving different chiral symmetries. The total entanglement spectra are found to be sensitive to the representations of the $U(1)^M$ symmetry in the boundary theory among other behaviours at $O(1)$. Similar results are also found for the Symmetry resolved entanglement entropies. The characteristic $\log\log\left(\ell/\epsilon\right)$ term of the $U(1)$ symmetry is found to be proportional to $M$ in the symmetry-resolved entanglement spectra.
Related papers
- Exactly solvable models for fermionic symmetry-enriched topological phases and fermionic 't Hooft anomaly [33.49184078479579]
The interplay between symmetry and topological properties plays a very important role in modern physics.
How to realize all these fermionic SET (fSET) phases in lattice models remains to be a difficult open problem.
arXiv Detail & Related papers (2024-10-24T19:52:27Z) - Entanglement asymmetry in the critical XXZ spin chain [0.0]
We study the explicit breaking of a $SU(2)$ symmetry to a $U(1)$ subgroup employing the entanglement asymmetry.
We consider as specific model the critical XXZ spin chain, which breaks the $SU(2)$ symmetry of spin rotations except at the isotropic point.
arXiv Detail & Related papers (2024-07-08T22:16:22Z) - Topological phase transition in fluctuating imaginary gauge fields [0.0]
We investigate the exact solvability and point-gap topological phase transitions in non-Hermitian lattice models.
By employing suitable imaginary gauge transformations, it is revealed that a lattice characterized by any given $g_n$ is spectrally equivalent to a lattice devoid of fields.
arXiv Detail & Related papers (2024-06-11T07:10:03Z) - Multipartite entanglement in the diagonal symmetric subspace [41.94295877935867]
For diagonal symmetric states, we show that there is no bound entanglement for $d = 3,4 $ and $N = 3$.
We present a constructive algorithm to map multipartite diagonal symmetric states of qudits onto bipartite symmetric states of larger local dimension.
arXiv Detail & Related papers (2024-03-08T12:06:16Z) - Symmetry-resolved Entanglement Entropy, Spectra & Boundary Conformal
Field Theory [0.0]
We perform a comprehensive analysis of the symmetry-resolved entanglement entropy (EE) for one single interval in the ground state of a $1+1$D conformal field theory (CFT)
We utilize the boundary CFT approach to study the total EE, which enables us to find the universal leading order behavior of the SREE.
We derive the symmetry-resolved entanglement spectra for a CFT invariant under a finite symmetry group.
arXiv Detail & Related papers (2023-09-06T18:03:14Z) - Theory of free fermions under random projective measurements [43.04146484262759]
We develop an analytical approach to the study of one-dimensional free fermions subject to random projective measurements of local site occupation numbers.
We derive a non-linear sigma model (NLSM) as an effective field theory of the problem.
arXiv Detail & Related papers (2023-04-06T15:19:33Z) - A New Look at the $C^{0}$-formulation of the Strong Cosmic Censorship
Conjecture [68.8204255655161]
We argue that for generic black hole parameters as initial conditions for Einstein equations, the metric is $C0$-extendable to a larger Lorentzian manifold.
We prove it violates the "complexity=volume" conjecture for a low-temperature hyperbolic AdS$_d+1$ black hole dual to a CFT living on a ($d-1$)-dimensional hyperboloid $H_d-1$.
arXiv Detail & Related papers (2022-06-17T12:14:33Z) - Annihilating Entanglement Between Cones [77.34726150561087]
We show that Lorentz cones are the only cones with a symmetric base for which a certain stronger version of the resilience property is satisfied.
Our proof exploits the symmetries of the Lorentz cones and applies two constructions resembling protocols for entanglement distillation.
arXiv Detail & Related papers (2021-10-22T15:02:39Z) - Classification of (2+1)D invertible fermionic topological phases with
symmetry [2.74065703122014]
We classify invertible fermionic topological phases of interacting fermions with symmetry in two spatial dimensions for general fermionic symmetry groups $G_f$.
Our results also generalize and provide a different approach to the recent classification of fermionic symmetry-protected topological phases by Wang and Gu.
arXiv Detail & Related papers (2021-09-22T21:02:07Z) - $\PT$ Symmetry and Renormalisation in Quantum Field Theory [62.997667081978825]
Quantum systems governed by non-Hermitian Hamiltonians with $PT$ symmetry are special in having real energy eigenvalues bounded below and unitary time evolution.
We show how $PT$ symmetry may allow interpretations that evade ghosts and instabilities present in an interpretation of the theory within a Hermitian framework.
arXiv Detail & Related papers (2021-03-27T09:46:36Z) - Boundary effects on symmetry resolved entanglement [0.0]
We study the symmetry resolved entanglement entropies in one-dimensional systems with boundaries.
We derive exact formulas for the charged and symmetry resolved entropies based on theorems and conjectures.
arXiv Detail & Related papers (2020-09-17T19:34:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.