論文の概要: Taking Training Seriously: Human Guidance and Management-Based Regulation of Artificial Intelligence
- arxiv url: http://arxiv.org/abs/2402.08466v2
- Date: Thu, 27 Jun 2024 02:45:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-28 19:37:12.799829
- Title: Taking Training Seriously: Human Guidance and Management-Based Regulation of Artificial Intelligence
- Title(参考訳): 真剣な訓練の実践 : 人工知能の人的指導と管理に基づく規制
- Authors: Cary Coglianese, Colton R. Crum,
- Abstract要約: 我々は、AIを管理する新たなマネジメントベースの規制フレームワークと、トレーニング中の人間の監視の必要性との関係について論じる。
規制当局に最も関心を抱くようなAIの高額なユースケースは、データのみのトレーニングよりも、人間の指導によるトレーニングに頼るべきだ、と私たちは主張する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Fervent calls for more robust governance of the harms associated with artificial intelligence (AI) are leading to the adoption around the world of what regulatory scholars have called a management-based approach to regulation. Recent initiatives in the United States and Europe, as well as the adoption of major self-regulatory standards by the International Organization for Standardization, share in common a core management-based paradigm. These management-based initiatives seek to motivate an increase in human oversight of how AI tools are trained and developed. Refinements and systematization of human-guided training techniques will thus be needed to fit within this emerging era of management-based regulatory paradigm. If taken seriously, human-guided training can alleviate some of the technical and ethical pressures on AI, boosting AI performance with human intuition as well as better addressing the needs for fairness and effective explainability. In this paper, we discuss the connection between the emerging management-based regulatory frameworks governing AI and the need for human oversight during training. We broadly cover some of the technical components involved in human-guided training and then argue that the kinds of high-stakes use cases for AI that appear of most concern to regulators should lean more on human-guided training than on data-only training. We hope to foster a discussion between legal scholars and computer scientists involving how to govern a domain of technology that is vast, heterogenous, and dynamic in its applications and risks.
- Abstract(参考訳): 人工知能(AI)に関連する害のより堅牢なガバナンスを求めるFerventは、規制学者が規制に対する管理ベースのアプローチと呼ぶものの世界的普及につながっている。
近年の米国と欧州におけるイニシアチブと、国際標準化機構による主要な自己規制標準の採用は、共通してコアマネジメントベースのパラダイムを共有している。
これらのマネジメントベースのイニシアチブは、AIツールのトレーニングと開発に関する人間の監視の増大を動機付けようとしている。
したがって、この新たな管理ベースの規制パラダイムの時代に適合するためには、人間誘導訓練技術の強化と体系化が必要である。
真剣に考えると、人間の指導によるトレーニングはAIの技術的なプレッシャーや倫理的なプレッシャーを和らげ、人間の直感によってAIのパフォーマンスを高め、公正性と効果的な説明可能性の必要性に対処する。
本稿では、AIを統括する新たなマネジメントベースの規制フレームワークと、トレーニング中の人間の監視の必要性との関係について論じる。
そして、規制当局に最も関心を抱くAIの高度なユースケースの種類は、データのみのトレーニングよりも、人間の指導によるトレーニングにもっと頼るべきである、と論じる。
我々は、法学者とコンピュータ科学者の間で、その応用とリスクにおいて、巨大で異質でダイナミックな技術の領域を管理する方法についての議論を促進することを望んでいます。
関連論文リスト
- Using AI Alignment Theory to understand the potential pitfalls of regulatory frameworks [55.2480439325792]
本稿では、欧州連合の人工知能法(EU AI法)を批判的に検討する。
人工知能における技術的アライメントの潜在的な落とし穴に焦点を当てたアライメント理論(AT)研究からの洞察を利用する。
これらの概念をEU AI Actに適用すると、潜在的な脆弱性と規制を改善するための領域が明らかになる。
論文 参考訳(メタデータ) (2024-10-10T17:38:38Z) - Open Problems in Technical AI Governance [93.89102632003996]
テクニカルAIガバナンス(Technical AI Governance)は、AIの効果的なガバナンスを支援するための技術分析とツールである。
本論文は、AIガバナンスへの貢献を目指す技術研究者や研究資金提供者のためのリソースとして意図されている。
論文 参考訳(メタデータ) (2024-07-20T21:13:56Z) - Challenges and Best Practices in Corporate AI Governance:Lessons from the Biopharmaceutical Industry [0.0]
我々は、AIガバナンスを運用しようとする組織が直面する課題について議論する。
これらには、AIガバナンスの物質的スコープをどのように定義するかに関する質問が含まれている。
私たちは、一般的なベストプラクティスでAIガバナンスフレームワークを設計、実装する責任を持つプロジェクトマネージャ、AI実践者、データプライバシオフィサーを提供したいと思っています。
論文 参考訳(メタデータ) (2024-07-07T12:01:42Z) - Human Oversight of Artificial Intelligence and Technical Standardisation [0.0]
AIのグローバルガバナンスの中で、人間の監視の要件は、いくつかの規制形式に具体化されている。
そのため、欧州連合(EU)の立法府は、人間の監督に対する法的要件を「取り除く」ために、過去よりもはるかに進んでいる。
AI意思決定プロセスにおける人間の位置に関する疑問は、特に注目されるべきである。
論文 参考訳(メタデータ) (2024-07-02T07:43:46Z) - Generative AI Needs Adaptive Governance [0.0]
ジェネレーティブAIは、ガバナンス、信頼、ヒューマンエージェンシーの概念に挑戦する。
本稿では,ジェネレーティブAIが適応的ガバナンスを求めていることを論じる。
我々は、アクター、ロール、および共有およびアクター固有のポリシー活動の概要を概説する。
論文 参考訳(メタデータ) (2024-06-06T23:47:14Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - The risks of risk-based AI regulation: taking liability seriously [46.90451304069951]
AIの開発と規制は、重要な段階に達したようだ。
一部の専門家は、GPT-4よりも強力なAIシステムのトレーニングに関するモラトリアムを求めている。
本稿では、最も先進的な法的提案である欧州連合のAI法について分析する。
論文 参考訳(メタデータ) (2023-11-03T12:51:37Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - Putting AI Ethics into Practice: The Hourglass Model of Organizational
AI Governance [0.0]
AIシステムの開発と利用を目標とする,AIガバナンスフレームワークを提案する。
このフレームワークは、AIシステムをデプロイする組織が倫理的AI原則を実践に翻訳するのを助けるように設計されている。
論文 参考訳(メタデータ) (2022-06-01T08:55:27Z) - An interdisciplinary conceptual study of Artificial Intelligence (AI)
for helping benefit-risk assessment practices: Towards a comprehensive
qualification matrix of AI programs and devices (pre-print 2020) [55.41644538483948]
本稿では,インテリジェンスの概念に対処するさまざまな分野の既存の概念を包括的に分析する。
目的は、AIシステムを評価するための共有概念や相違点を特定することである。
論文 参考訳(メタデータ) (2021-05-07T12:01:31Z) - AI Governance for Businesses [2.072259480917207]
データを有効に活用し、AI関連のコストとリスクを最小限にすることで、AIを活用することを目指している。
この作業では、AIプロダクトをシステムとみなし、機械学習(ML)モデルによって(トレーニング)データを活用する重要な機能が提供される。
我々のフレームワークは、AIガバナンスを4次元に沿ってデータガバナンス、(ML)モデル、(AI)システムに分解します。
論文 参考訳(メタデータ) (2020-11-20T22:31:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。