論文の概要: Challenges and Best Practices in Corporate AI Governance:Lessons from the Biopharmaceutical Industry
- arxiv url: http://arxiv.org/abs/2407.05339v1
- Date: Sun, 7 Jul 2024 12:01:42 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-09 20:07:19.765384
- Title: Challenges and Best Practices in Corporate AI Governance:Lessons from the Biopharmaceutical Industry
- Title(参考訳): 企業AIガバナンスの課題とベストプラクティス:バイオ医薬品産業からの教訓
- Authors: Jakob Mökander, Margi Sheth, Mimmi Gersbro-Sundler, Peder Blomgren, Luciano Floridi,
- Abstract要約: 我々は、AIガバナンスを運用しようとする組織が直面する課題について議論する。
これらには、AIガバナンスの物質的スコープをどのように定義するかに関する質問が含まれている。
私たちは、一般的なベストプラクティスでAIガバナンスフレームワークを設計、実装する責任を持つプロジェクトマネージャ、AI実践者、データプライバシオフィサーを提供したいと思っています。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: While the use of artificial intelligence (AI) systems promises to bring significant economic and social benefits, it is also coupled with ethical, legal, and technical challenges. Business leaders thus face the question of how to best reap the benefits of automation whilst managing the associated risks. As a first step, many companies have committed themselves to various sets of ethics principles aimed at guiding the design and use of AI systems. So far so good. But how can well-intentioned ethical principles be translated into effective practice? And what challenges await companies that attempt to operationalize AI governance? In this article, we address these questions by drawing on our first-hand experience of shaping and driving the roll-out of AI governance within AstraZeneca, a biopharmaceutical company. The examples we discuss highlight challenges that any organization attempting to operationalize AI governance will have to face. These include questions concerning how to define the material scope of AI governance, how to harmonize standards across decentralized organizations, and how to measure the impact of specific AI governance initiatives. By showcasing how AstraZeneca managed these operational questions, we hope to provide project managers, CIOs, AI practitioners, and data privacy officers responsible for designing and implementing AI governance frameworks within other organizations with generalizable best practices. In essence, companies seeking to operationalize AI governance are encouraged to build on existing policies and governance structures, use pragmatic and action-oriented terminology, focus on risk management in development and procurement, and empower employees through continuous education and change management.
- Abstract(参考訳): 人工知能(AI)システムの利用は、経済的、社会的に大きな利益をもたらすことを約束する一方で、倫理的、法的、技術的課題とも結びついている。
ビジネスリーダは、関連するリスクを管理しながら、自動化のメリットを最大限に享受する方法という問題に直面します。
最初のステップとして、多くの企業は、AIシステムの設計と利用を導くことを目的とした様々な倫理原則に身を捧げてきた。
ここまでうまくいった。
しかし、十分に意図された倫理原則を効果的に実践するにはどうすればよいのか?
AIガバナンスを運用しようとする企業が、どのような課題を待ち受けているのか?
本稿では,バイオ医薬品企業であるAstraZenecaにおける,AIガバナンスの展開と展開に関する私たちの経験を生かして,これらの疑問に対処する。
この記事では、AIガバナンスを運用しようとする組織が直面する課題について紹介する。
これらの質問には、AIガバナンスの物質的スコープの定義方法、分散化された組織間で標準を調和させる方法、特定のAIガバナンスイニシアチブの影響を測定する方法などが含まれている。
AstraZenecaがこれらの運用上の問題をどのように管理したかを示すことで、プロジェクトマネージャ、CIO、AI実践者、データプライバシ担当者に、汎用的なベストプラクティスでAIガバナンスフレームワークを設計および実装する責任を負わせたいと考えています。
基本的に、AIガバナンスの運用を目指す企業は、既存のポリシとガバナンス構造の構築、実践的かつアクション指向の用語の使用、開発と調達におけるリスク管理の重視、継続的な教育と変革管理を通じて従業員に権限を与えるように奨励されている。
関連論文リスト
- Open Problems in Technical AI Governance [93.89102632003996]
テクニカルAIガバナンス(Technical AI Governance)は、AIの効果的なガバナンスを支援するための技術分析とツールである。
本論文は、AIガバナンスへの貢献を目指す技術研究者や研究資金提供者のためのリソースとして意図されている。
論文 参考訳(メタデータ) (2024-07-20T21:13:56Z) - Particip-AI: A Democratic Surveying Framework for Anticipating Future AI Use Cases, Harms and Benefits [54.648819983899614]
Particip-AIは、現在および将来のAIユースケースと、非専門家から損害と利益を収集するフレームワークである。
人口統計学的に多様な参加者295名から回答を得た。
論文 参考訳(メタデータ) (2024-03-21T19:12:37Z) - AI Ethics and Governance in Practice: An Introduction [0.4091406230302996]
AIシステムは個人や社会に変革的かつ長期的影響を及ぼす可能性がある。
これらの影響を責任を持って管理するには、AI倫理とガバナンスの考慮が最優先事項である必要がある。
PBG Frameworkは、プロジェクトチームが倫理的価値と実践的原則をイノベーションプラクティスに統合することを可能にする多層ガバナンスモデルです。
論文 参考訳(メタデータ) (2024-02-19T22:43:19Z) - Towards Responsible AI in Banking: Addressing Bias for Fair
Decision-Making [69.44075077934914]
責任AI(Responsible AI)は、企業文化の発展におけるバイアスに対処する重要な性質を強調している。
この論文は、バイアスを理解すること、バイアスを緩和すること、バイアスを説明することの3つの基本的な柱に基づいて構成されている。
オープンソースの原則に従って、アクセス可能なPythonパッケージとして、Bias On DemandとFairViewをリリースしました。
論文 参考訳(メタデータ) (2024-01-13T14:07:09Z) - Managing extreme AI risks amid rapid progress [171.05448842016125]
我々は、大規模社会被害、悪意のある使用、自律型AIシステムに対する人間の制御の不可逆的な喪失を含むリスクについて説明する。
このようなリスクがどのように発生し、どのように管理するかについては、合意の欠如があります。
現在のガバナンスイニシアチブには、誤用や無謀を防ぎ、自律システムにほとんど対処するメカニズムや制度が欠けている。
論文 参考訳(メタデータ) (2023-10-26T17:59:06Z) - A Review of the Ethics of Artificial Intelligence and its Applications
in the United States [0.0]
この論文は、AIが米国経済のあらゆる分野に与える影響と、ビジネス、政府、アカデミック、そして市民社会にまたがる組織に与える影響を強調している。
我々の議論は、包括的なテーマとして構成された11の基本的な「倫理的原則」を探求する。
これらは透明性、正義、公正、平等、非正当性、責任、説明責任、プライバシー、利益、自由、自律、信頼、尊厳、持続可能性、連帯性を含む。
論文 参考訳(メタデータ) (2023-10-09T14:29:00Z) - Putting AI Ethics into Practice: The Hourglass Model of Organizational
AI Governance [0.0]
AIシステムの開発と利用を目標とする,AIガバナンスフレームワークを提案する。
このフレームワークは、AIシステムをデプロイする組織が倫理的AI原則を実践に翻訳するのを助けるように設計されている。
論文 参考訳(メタデータ) (2022-06-01T08:55:27Z) - Building Bridges: Generative Artworks to Explore AI Ethics [56.058588908294446]
近年,人工知能(AI)技術が社会に与える影響の理解と緩和に重点が置かれている。
倫理的AIシステムの設計における重要な課題は、AIパイプラインには複数の利害関係者があり、それぞれがそれぞれ独自の制約と関心を持っていることだ。
このポジションペーパーは、生成的アートワークが、アクセス可能で強力な教育ツールとして機能することで、この役割を果たすことができる可能性のいくつかを概説する。
論文 参考訳(メタデータ) (2021-06-25T22:31:55Z) - AI Governance for Businesses [2.072259480917207]
データを有効に活用し、AI関連のコストとリスクを最小限にすることで、AIを活用することを目指している。
この作業では、AIプロダクトをシステムとみなし、機械学習(ML)モデルによって(トレーニング)データを活用する重要な機能が提供される。
我々のフレームワークは、AIガバナンスを4次元に沿ってデータガバナンス、(ML)モデル、(AI)システムに分解します。
論文 参考訳(メタデータ) (2020-11-20T22:31:37Z) - Where Responsible AI meets Reality: Practitioner Perspectives on
Enablers for shifting Organizational Practices [3.119859292303396]
本稿では,組織文化と構造がAI実践における責任あるイニシアチブの有効性に与える影響を分析するための枠組みについて検討し,提案する。
我々は、業界で働く実践者との半構造化質的なインタビューの結果、共通の課題、倫理的緊張、そして責任あるAIイニシアチブのための効果的なイネーブラーについて調査する。
論文 参考訳(メタデータ) (2020-06-22T15:57:30Z) - Toward Trustworthy AI Development: Mechanisms for Supporting Verifiable
Claims [59.64274607533249]
AI開発者は、責任を負うことのできる検証可能な主張をする必要がある。
このレポートは、さまざまな利害関係者がAIシステムに関するクレームの妥当性を改善するための様々なステップを示唆している。
我々は、この目的のための10のメカニズム、すなわち、組織、ソフトウェア、ハードウェアを分析し、それらのメカニズムの実装、探索、改善を目的とした推奨を行う。
論文 参考訳(メタデータ) (2020-04-15T17:15:35Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。