An extensive simulation study evaluating the interaction of resampling techniques across multiple causal discovery contexts
- URL: http://arxiv.org/abs/2503.15436v1
- Date: Wed, 19 Mar 2025 17:18:18 GMT
- Title: An extensive simulation study evaluating the interaction of resampling techniques across multiple causal discovery contexts
- Authors: Ritwick Banerjee, Bryan Andrews, Erich Kummerfeld,
- Abstract summary: We present theoretical results proving that certain resampling methods emulate the assignment of specific values to algorithm tuning parameters.<n>We also report the results of extensive simulation experiments, which verify the theoretical result and provide substantial data.
- Score: 2.0946534289186842
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the accelerating presence of exploratory causal analysis in modern science and medicine, the available non-experimental methods for validating causal models are not well characterized. One of the most popular methods is to evaluate the stability of model features after resampling the data, similar to resampling methods for estimating confidence intervals in statistics. Many aspects of this approach have received little to no attention, however, such as whether the choice of resampling method should depend on the sample size, algorithms being used, or algorithm tuning parameters. We present theoretical results proving that certain resampling methods closely emulate the assignment of specific values to algorithm tuning parameters. We also report the results of extensive simulation experiments, which verify the theoretical result and provide substantial data to aid researchers in further characterizing resampling in the context of causal discovery analysis. Together, the theoretical work and simulation results provide specific guidance on how resampling methods and tuning parameters should be selected in practice.
Related papers
- Covariate-dependent Graphical Model Estimation via Neural Networks with Statistical Guarantees [18.106204331704156]
We consider settings where the graph structure is co-dependent, and investigate a deep neural network-based approach to estimate it.
Theoretical results with PAC guarantees are established for the method, under assumptions commonly used in an Empirical Risk Minimization framework.
The performance of the proposed method is evaluated on several synthetic data settings and benchmarked against existing approaches.
arXiv Detail & Related papers (2025-04-23T02:13:36Z) - Globally-Optimal Greedy Experiment Selection for Active Sequential
Estimation [1.1530723302736279]
We study the problem of active sequential estimation, which involves adaptively selecting experiments for sequentially collected data.
The goal is to design experiment selection rules for more accurate model estimation.
We propose a class of greedy experiment selection methods and provide statistical analysis for the maximum likelihood.
arXiv Detail & Related papers (2024-02-13T17:09:29Z) - Towards stable real-world equation discovery with assessing
differentiating quality influence [52.2980614912553]
We propose alternatives to the commonly used finite differences-based method.
We evaluate these methods in terms of applicability to problems, similar to the real ones, and their ability to ensure the convergence of equation discovery algorithms.
arXiv Detail & Related papers (2023-11-09T23:32:06Z) - Selective Nonparametric Regression via Testing [54.20569354303575]
We develop an abstention procedure via testing the hypothesis on the value of the conditional variance at a given point.
Unlike existing methods, the proposed one allows to account not only for the value of the variance itself but also for the uncertainty of the corresponding variance predictor.
arXiv Detail & Related papers (2023-09-28T13:04:11Z) - Benchmarking Bayesian Causal Discovery Methods for Downstream Treatment
Effect Estimation [137.3520153445413]
A notable gap exists in the evaluation of causal discovery methods, where insufficient emphasis is placed on downstream inference.
We evaluate seven established baseline causal discovery methods including a newly proposed method based on GFlowNets.
The results of our study demonstrate that some of the algorithms studied are able to effectively capture a wide range of useful and diverse ATE modes.
arXiv Detail & Related papers (2023-07-11T02:58:10Z) - A Meta-Learning Method for Estimation of Causal Excursion Effects to Assess Time-Varying Moderation [0.0]
This paper revisits the estimation of causal excursion effects from a meta-learner perspective.
We present the properties of the proposed estimators and compare them both theoretically and through extensive simulations.
The results show relative efficiency gains and support the suggestion of a doubly robust alternative to existing methods.
arXiv Detail & Related papers (2023-06-28T15:19:33Z) - Quantitative probing: Validating causal models using quantitative domain
knowledge [0.0]
We present quantitative probing as a framework for validating causal models in the presence of quantitative domain knowledge.
The method is constructed as an analogue of the train/test split in correlation-based machine learning.
The code for integrating quantitative probing into causal analysis is provided in two separate open-source Python packages.
arXiv Detail & Related papers (2022-09-07T09:19:11Z) - Evaluating Causal Inference Methods [0.4588028371034407]
We introduce a deep generative model-based framework, Credence, to validate causal inference methods.
Our work introduces a deep generative model-based framework, Credence, to validate causal inference methods.
arXiv Detail & Related papers (2022-02-09T00:21:22Z) - MINIMALIST: Mutual INformatIon Maximization for Amortized Likelihood
Inference from Sampled Trajectories [61.3299263929289]
Simulation-based inference enables learning the parameters of a model even when its likelihood cannot be computed in practice.
One class of methods uses data simulated with different parameters to infer an amortized estimator for the likelihood-to-evidence ratio.
We show that this approach can be formulated in terms of mutual information between model parameters and simulated data.
arXiv Detail & Related papers (2021-06-03T12:59:16Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
Inferring the parameters of a model based on experimental observations is central to the scientific method.
A particularly challenging setting is when the model is strongly indeterminate, i.e., when distinct sets of parameters yield identical observations.
We present a method for cracking such indeterminacy by exploiting additional information conveyed by an auxiliary set of observations sharing global parameters.
arXiv Detail & Related papers (2021-02-12T12:23:13Z) - How and Why to Use Experimental Data to Evaluate Methods for
Observational Causal Inference [7.551130027327462]
We describe and analyze observational sampling from randomized controlled trials (OSRCT)
This method can be used to create constructed observational data sets with corresponding unbiased estimates of treatment effect.
We then perform a large-scale evaluation of seven causal inference methods over 37 data sets.
arXiv Detail & Related papers (2020-10-06T21:44:01Z) - A Survey on Causal Inference [64.45536158710014]
Causal inference is a critical research topic across many domains, such as statistics, computer science, education, public policy and economics.
Various causal effect estimation methods for observational data have sprung up.
arXiv Detail & Related papers (2020-02-05T21:35:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.