Automated detection of motion artifacts in brain MR images using deep
learning and explainable artificial intelligence
- URL: http://arxiv.org/abs/2402.08749v1
- Date: Tue, 13 Feb 2024 19:36:23 GMT
- Title: Automated detection of motion artifacts in brain MR images using deep
learning and explainable artificial intelligence
- Authors: Marina Manso Jimeno, Keerthi Sravan Ravi, Maggie Fung, John Thomas
Vaughan, Jr., Sairam Geethanath
- Abstract summary: This study demonstrates a deep learning model to detect rigid motion in T1-weighted brain images.
The model achieved average precision and recall metrics of 85% and 80% on six motion-simulated retrospective datasets.
This model is part of the ArtifactID tool, aimed at inline automatic detection of Gibbs ringing, wrap-around, and motion artifacts.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quality assessment, including inspecting the images for artifacts, is a
critical step during MRI data acquisition to ensure data quality and downstream
analysis or interpretation success. This study demonstrates a deep learning
model to detect rigid motion in T1-weighted brain images. We leveraged a 2D CNN
for three-class classification and tested it on publicly available
retrospective and prospective datasets. Grad-CAM heatmaps enabled the
identification of failure modes and provided an interpretation of the model's
results. The model achieved average precision and recall metrics of 85% and 80%
on six motion-simulated retrospective datasets. Additionally, the model's
classifications on the prospective dataset showed a strong inverse correlation
(-0.84) compared to average edge strength, an image quality metric indicative
of motion. This model is part of the ArtifactID tool, aimed at inline automatic
detection of Gibbs ringing, wrap-around, and motion artifacts. This tool
automates part of the time-consuming QA process and augments expertise on-site,
particularly relevant in low-resource settings where local MR knowledge is
scarce.
Related papers
- Accelerating Domain-Aware Electron Microscopy Analysis Using Deep Learning Models with Synthetic Data and Image-Wide Confidence Scoring [0.0]
We create a physics-based synthetic image and data generator, resulting in a machine learning model that achieves comparable precision (0.86), recall (0.63), F1 scores (0.71), and engineering property predictions (R2=0.82)
Our study demonstrates that synthetic data can eliminate human reliance in ML and provides a means for domain awareness in cases where many feature detections per image are needed.
arXiv Detail & Related papers (2024-08-02T20:15:15Z) - Improving Interpretability and Robustness for the Detection of AI-Generated Images [6.116075037154215]
We analyze existing state-of-the-art AIGI detection methods based on frozen CLIP embeddings.
We show how to interpret them, shedding light on how images produced by various AI generators differ from real ones.
arXiv Detail & Related papers (2024-06-21T10:33:09Z) - Diffusion Model Based Visual Compensation Guidance and Visual Difference
Analysis for No-Reference Image Quality Assessment [82.13830107682232]
We propose a novel class of state-of-the-art (SOTA) generative model, which exhibits the capability to model intricate relationships.
We devise a new diffusion restoration network that leverages the produced enhanced image and noise-containing images.
Two visual evaluation branches are designed to comprehensively analyze the obtained high-level feature information.
arXiv Detail & Related papers (2024-02-22T09:39:46Z) - Innovative Horizons in Aerial Imagery: LSKNet Meets DiffusionDet for
Advanced Object Detection [55.2480439325792]
We present an in-depth evaluation of an object detection model that integrates the LSKNet backbone with the DiffusionDet head.
The proposed model achieves a mean average precision (MAP) of approximately 45.7%, which is a significant improvement.
This advancement underscores the effectiveness of the proposed modifications and sets a new benchmark in aerial image analysis.
arXiv Detail & Related papers (2023-11-21T19:49:13Z) - Realistic Restorer: artifact-free flow restorer(AF2R) for MRI motion
artifact removal [3.8103327351507255]
Motion artifact severely degrades image quality, reduces examination efficiency, and makes accurate diagnosis difficult.
Previous methods often relied on implicit models for artifact correction, resulting in biases in modeling the artifact formation mechanism.
We incorporate the artifact generation mechanism to reestablish the relationship between artifacts and anatomical content in the image domain.
arXiv Detail & Related papers (2023-06-19T04:02:01Z) - DeepDC: Deep Distance Correlation as a Perceptual Image Quality
Evaluator [53.57431705309919]
ImageNet pre-trained deep neural networks (DNNs) show notable transferability for building effective image quality assessment (IQA) models.
We develop a novel full-reference IQA (FR-IQA) model based exclusively on pre-trained DNN features.
We conduct comprehensive experiments to demonstrate the superiority of the proposed quality model on five standard IQA datasets.
arXiv Detail & Related papers (2022-11-09T14:57:27Z) - CONVIQT: Contrastive Video Quality Estimator [63.749184706461826]
Perceptual video quality assessment (VQA) is an integral component of many streaming and video sharing platforms.
Here we consider the problem of learning perceptually relevant video quality representations in a self-supervised manner.
Our results indicate that compelling representations with perceptual bearing can be obtained using self-supervised learning.
arXiv Detail & Related papers (2022-06-29T15:22:01Z) - Knowledge Distillation for Oriented Object Detection on Aerial Images [1.827510863075184]
We present a model compression method for rotated object detection on aerial images by knowledge distillation, namely KD-RNet.
The experimental result on a large-scale aerial object detection dataset (DOTA) demonstrates that the proposed KD-RNet model can achieve improved mean-average precision (mAP) with reduced number of parameters, at the same time, KD-RNet boost the performance on providing high quality detections with higher overlap with groundtruth annotations.
arXiv Detail & Related papers (2022-06-20T14:24:16Z) - Automated SSIM Regression for Detection and Quantification of Motion
Artefacts in Brain MR Images [54.739076152240024]
Motion artefacts in magnetic resonance brain images are a crucial issue.
The assessment of MR image quality is fundamental before proceeding with the clinical diagnosis.
An automated image quality assessment based on the structural similarity index (SSIM) regression has been proposed here.
arXiv Detail & Related papers (2022-06-14T10:16:54Z) - Information-Theoretic Odometry Learning [83.36195426897768]
We propose a unified information theoretic framework for learning-motivated methods aimed at odometry estimation.
The proposed framework provides an elegant tool for performance evaluation and understanding in information-theoretic language.
arXiv Detail & Related papers (2022-03-11T02:37:35Z) - Comparison of Convolutional neural network training parameters for
detecting Alzheimers disease and effect on visualization [0.0]
Convolutional neural networks (CNN) have become a powerful tool for detecting patterns in image data.
Despite the high accuracy obtained from CNN models for MRI data so far, almost no papers provided information on the features or image regions driving this accuracy.
arXiv Detail & Related papers (2020-08-18T15:21:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.