論文の概要: Inference for an Algorithmic Fairness-Accuracy Frontier
- arxiv url: http://arxiv.org/abs/2402.08879v2
- Date: Fri, 13 Jun 2025 21:49:26 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-06-17 17:28:44.395775
- Title: Inference for an Algorithmic Fairness-Accuracy Frontier
- Title(参考訳): アルゴリズムフェアネス-精度フロンティアの推論
- Authors: Yiqi Liu, Francesca Molinari,
- Abstract要約: フェアネス・精度フロンティアのためのバイアス付き機械学習推定器を提案する。
本研究では,その分布を導出し,フェアネス文学における重要な仮説を検証するための推論手法を提案する。
提案手法は,両次元に改良を加えたフェアネス・正確性フロンティア上の代替アルゴリズムを導出することを示す。
- 参考スコア(独自算出の注目度): 0.7743097066308449
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Algorithms are increasingly used to aid with high-stakes decision making. Yet, their predictive ability frequently exhibits systematic variation across population subgroups. To assess the trade-off between fairness and accuracy using finite data, we propose a debiased machine learning estimator for the fairness-accuracy frontier introduced by Liang, Lu, Mu, and Okumura (2024). We derive its asymptotic distribution and propose inference methods to test key hypotheses in the fairness literature, such as (i) whether excluding group identity from use in training the algorithm is optimal and (ii) whether there are less discriminatory alternatives to a given algorithm. In addition, we construct an estimator for the distance between a given algorithm and the fairest point on the frontier, and characterize its asymptotic distribution. Using Monte Carlo simulations, we evaluate the finite-sample performance of our inference methods. We apply our framework to re-evaluate algorithms used in hospital care management and show that our approach yields alternative algorithms that lie on the fairness-accuracy frontier, offering improvements along both dimensions.
- Abstract(参考訳): アルゴリズムは、高い意思決定を支援するためにますます使われています。
しかし、その予測能力は集団のサブグループにまたがる体系的な変化をしばしば示している。
有限データを用いたフェアネスと精度のトレードオフを評価するため,Lang, Lu, Mu, Okumura (2024) が導入したフェアネス・精度フロンティアのデバイアス付き機械学習推定器を提案する。
我々はその漸近分布を導出し、フェアネス文学などの重要な仮説を検証するための推論法を提案する。
i) アルゴリズムの訓練における使用からグループアイデンティティを除外することが最適であるか否か
(ii) あるアルゴリズムに対して差別的な選択肢が少ないか否か。
さらに,与えられたアルゴリズムとフロンティアの最良点の距離を推定し,その漸近分布を特徴付ける。
モンテカルロシミュレーションを用いて,提案手法の有限サンプル性能を評価する。
本手法は, 病院ケア管理におけるアルゴリズムの再評価に応用し, フェアネス・正確性フロンティアに在る代替アルゴリズムが, 両次元に改善をもたらすことを示す。
関連論文リスト
- Fairness with Exponential Weights [4.368185344922342]
特定のアプリケーションにおける識別を除去する必要性から、Hedgeの効率的な実装を等価な文脈的帯域幅問題に対して効率的に変換できるメタアルゴリズムを開発した。
統計的に同値な任意のアルゴリズムに対して、結果のアルゴリズムは、それぞれ独立に保護された特性に対してExp4の対応するインスタンスを実行するのと同じ後悔境界を持つ。
論文 参考訳(メタデータ) (2024-11-06T22:25:56Z) - Non-Convex Robust Hypothesis Testing using Sinkhorn Uncertainty Sets [18.46110328123008]
非破壊仮説テスト問題に対処する新しい枠組みを提案する。
目標は、最大数値リスクを最小限に抑える最適な検出器を探すことである。
論文 参考訳(メタデータ) (2024-03-21T20:29:43Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Online POMDP Planning with Anytime Deterministic Guarantees [11.157761902108692]
不確実性の下での計画は、部分的に観測可能なマルコフ決定プロセス(POMDP)を用いて数学的に定式化できる
POMDPの最適計画を見つけるには計算コストがかかり、小さなタスクにのみ適用可能である。
簡便な解と理論的に最適な解との決定論的関係を導出する。
論文 参考訳(メタデータ) (2023-10-03T04:40:38Z) - Provably Efficient Learning in Partially Observable Contextual Bandit [4.910658441596583]
古典的帯域幅アルゴリズムの改善に因果境界をどのように適用できるかを示す。
本研究は,実世界の応用における文脈的包括的エージェントの性能を高める可能性を秘めている。
論文 参考訳(メタデータ) (2023-08-07T13:24:50Z) - Online Heavy-tailed Change-point detection [6.7643284029102295]
我々は,データ生成プロセスの第2モーメントが有界であると仮定した場合でも,クリッピングされたグラディエント・ディクセント(SGD)に基づくアルゴリズムを提案する。
我々は、有界な第2モーメントを持つすべての分布の族に対して、最悪の場合、有限サンプル偽陽性率(FPR)を導出する。
本手法は,データが高次元かつ基礎となる分布が重み付きであっても,有限サンプルFPRを保証する最初のOCPDアルゴリズムである。
論文 参考訳(メタデータ) (2023-06-15T23:39:05Z) - Fully Stochastic Trust-Region Sequential Quadratic Programming for
Equality-Constrained Optimization Problems [62.83783246648714]
目的と決定論的等式制約による非線形最適化問題を解くために,逐次2次プログラミングアルゴリズム(TR-StoSQP)を提案する。
アルゴリズムは信頼領域半径を適応的に選択し、既存の直線探索StoSQP方式と比較して不確定なヘッセン行列を利用することができる。
論文 参考訳(メタデータ) (2022-11-29T05:52:17Z) - Structural Estimation of Markov Decision Processes in High-Dimensional
State Space with Finite-Time Guarantees [39.287388288477096]
本研究では,実施行動と訪問状態の観測可能な履歴に基づいて,人間エージェントによる動的決定の構造モデルの推定作業を検討する。
この問題には固有のネスト構造があり、内部問題では与えられた報酬関数に対する最適ポリシーが特定され、外部問題では適合度の測定が最大化される。
本研究では,高次元状態空間を扱うための有限時間保証付き単一ループ推定アルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-04T00:11:38Z) - Amortized Conditional Normalized Maximum Likelihood: Reliable Out of
Distribution Uncertainty Estimation [99.92568326314667]
本研究では,不確実性推定のための拡張性のある汎用的アプローチとして,償却条件正規化最大値(ACNML)法を提案する。
提案アルゴリズムは条件付き正規化最大度(CNML)符号化方式に基づいており、最小記述長の原理に従って最小値の最適特性を持つ。
我々は、ACNMLが、分布外入力のキャリブレーションの観点から、不確実性推定のための多くの手法と好意的に比較することを示した。
論文 参考訳(メタデータ) (2020-11-05T08:04:34Z) - An Asymptotically Optimal Primal-Dual Incremental Algorithm for
Contextual Linear Bandits [129.1029690825929]
複数の次元に沿った最先端技術を改善する新しいアルゴリズムを提案する。
非文脈線形帯域の特別な場合において、学習地平線に対して最小限の最適性を確立する。
論文 参考訳(メタデータ) (2020-10-23T09:12:47Z) - Large-Scale Methods for Distributionally Robust Optimization [53.98643772533416]
我々のアルゴリズムは、トレーニングセットのサイズとパラメータの数によらず、多くの評価勾配を必要とすることを証明している。
MNIST と ImageNet の実験により,本手法の 9-36 倍の効率性を持つアルゴリズムの理論的スケーリングが確認された。
論文 参考訳(メタデータ) (2020-10-12T17:41:44Z) - A Distributional Analysis of Sampling-Based Reinforcement Learning
Algorithms [67.67377846416106]
定常ステップサイズに対する強化学習アルゴリズムの理論解析に対する分布的アプローチを提案する。
本稿では,TD($lambda$)や$Q$-Learningのような値ベースの手法が,関数の分布空間で制約のある更新ルールを持つことを示す。
論文 参考訳(メタデータ) (2020-03-27T05:13:29Z) - Scalable Approximate Inference and Some Applications [2.6541211006790983]
本稿では,近似推論のための新しいフレームワークを提案する。
提案する4つのアルゴリズムは,Steinの手法の最近の計算進歩に動機付けられている。
シミュレーションおよび実データを用いた結果から,アルゴリズムの統計的効率と適用性を示す。
論文 参考訳(メタデータ) (2020-03-07T04:33:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。