論文の概要: Fairness with Exponential Weights
- arxiv url: http://arxiv.org/abs/2411.04295v2
- Date: Sun, 16 Feb 2025 14:07:06 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-18 14:03:54.257997
- Title: Fairness with Exponential Weights
- Title(参考訳): 指数重みの公平性
- Authors: Stephen Pasteris, Chris Hicks, Vasilios Mavroudis,
- Abstract要約: 特定のアプリケーションにおける識別を除去する必要性から、Hedgeの効率的な実装を等価な文脈的帯域幅問題に対して効率的に変換できるメタアルゴリズムを開発した。
統計的に同値な任意のアルゴリズムに対して、結果のアルゴリズムは、それぞれ独立に保護された特性に対してExp4の対応するインスタンスを実行するのと同じ後悔境界を持つ。
- 参考スコア(独自算出の注目度): 4.368185344922342
- License:
- Abstract: Motivated by the need to remove discrimination in certain applications, we develop a meta-algorithm that can convert any efficient implementation of an instance of Hedge (or equivalently, an algorithm for discrete bayesian inference) into an efficient algorithm for the equivalent contextual bandit problem which guarantees exact statistical parity on every trial. Relative to any comparator with statistical parity, the resulting algorithm has the same asymptotic regret bound as running the corresponding instance of Exp4 for each protected characteristic independently. Given that our Hedge instance admits non-stationarity we can handle a varying distribution with which to enforce statistical parity with respect to, which is useful when the true population is unknown and needs to be estimated from the data received so far. Via online-to-batch conversion we can handle the equivalent batch classification problem with exact statistical parity, giving us results that we believe are novel and important in their own right.
- Abstract(参考訳): 特定のアプリケーションにおける差別を取り除く必要性から、Hedgeのインスタンスの効率的な実装(あるいは離散ベイズ推論のアルゴリズム)を、全ての試行において正確な統計パリティを保証する等価な文脈的帯域問題に対する効率的なアルゴリズムに変換するメタアルゴリズムを開発する。
統計的パリティを持つ任意のコンパレータに対して、結果のアルゴリズムは、それぞれ独立に保護された特性に対してExp4の対応するインスタンスを実行するのと同じ漸近的後悔を持つ。
我々のHedgeインスタンスが非定常性を認めていることを考慮すれば、実際の人口が不明な場合に有効であり、これまでに受信したデータから推定する必要がある、統計パリティを強制する様々な分布を扱うことができる。
オンラインからバッチへの変換によって、同等のバッチ分類問題を正確な統計値で処理することが可能になります。
関連論文リスト
- Targeted Learning for Data Fairness [52.59573714151884]
データ生成プロセス自体の公平性を評価することにより、公平性推論を拡張する。
我々は、人口統計学的平等、平等機会、条件付き相互情報から推定する。
提案手法を検証するため,いくつかのシミュレーションを行い,実データに適用する。
論文 参考訳(メタデータ) (2025-02-06T18:51:28Z) - Treatment of Statistical Estimation Problems in Randomized Smoothing for Adversarial Robustness [0.0]
ランダムな平滑化のための統計的推定問題について検討し,計算負担の有無を確かめる。
本稿では,標準手法と同じ統計的保証を享受する信頼度系列を用いた推定手法を提案する。
厳密な認証を行うために,Clopper-Pearson信頼区間のランダム化版を提供する。
論文 参考訳(メタデータ) (2024-06-25T14:00:55Z) - Differentially Private Post-Processing for Fair Regression [13.855474876965557]
我々のアルゴリズムは任意の回帰器を後処理し、出力を再マッピングすることで公平性を向上させることができる。
我々は,本アルゴリズムのサンプル複雑性を分析し,ヒストグラム中のビン数の選択から得られる統計的バイアスと分散とのトレードオフを明らかにする。
論文 参考訳(メタデータ) (2024-05-07T06:09:37Z) - Inference for an Algorithmic Fairness-Accuracy Frontier [0.9147443443422864]
We provide a consistent estimator for a theoretical fairness-accuracy frontier forward by Liang, Lu and Mu (2023)
フェアネス文学で注目されている仮説を検証するための推論手法を提案する。
サンプルサイズが大きくなるにつれて, 推定された支持関数が密なプロセスに収束することを示す。
論文 参考訳(メタデータ) (2024-02-14T00:56:09Z) - Stability is Stable: Connections between Replicability, Privacy, and
Adaptive Generalization [26.4468964378511]
複製可能なアルゴリズムは、そのランダム性が固定されたときに高い確率で同じ出力を与える。
データ解析にレプリカブルアルゴリズムを使用することで、公開結果の検証が容易になる。
我々は、複製性とアルゴリズム安定性の標準概念との新たな接続と分離を確立する。
論文 参考訳(メタデータ) (2023-03-22T21:35:50Z) - Statistical Efficiency of Score Matching: The View from Isoperimetry [96.65637602827942]
本研究では, スコアマッチングの統計的効率と推定される分布の等尺性との間に, 密接な関係を示す。
これらの結果はサンプル状態と有限状態の両方で定式化する。
論文 参考訳(メタデータ) (2022-10-03T06:09:01Z) - A Stochastic Newton Algorithm for Distributed Convex Optimization [62.20732134991661]
均質な分散凸最適化のためのNewtonアルゴリズムを解析し、各マシンが同じ人口目標の勾配を計算する。
提案手法は,既存の手法と比較して,性能を損なうことなく,必要な通信ラウンドの数,頻度を低減できることを示す。
論文 参考訳(メタデータ) (2021-10-07T17:51:10Z) - $\gamma$-ABC: Outlier-Robust Approximate Bayesian Computation Based on a
Robust Divergence Estimator [95.71091446753414]
最寄りの$gamma$-divergence推定器をデータ差分尺度として用いることを提案する。
本手法は既存の不一致対策よりも高いロバスト性を実現する。
論文 参考訳(メタデータ) (2020-06-13T06:09:27Z) - Instability, Computational Efficiency and Statistical Accuracy [101.32305022521024]
我々は,人口レベルでのアルゴリズムの決定論的収束率と,$n$サンプルに基づく経験的対象に適用した場合の(不安定性)の間の相互作用に基づいて,統計的精度を得るフレームワークを開発する。
本稿では,ガウス混合推定,非線形回帰モデル,情報的非応答モデルなど,いくつかの具体的なモデルに対する一般結果の応用について述べる。
論文 参考訳(メタデータ) (2020-05-22T22:30:52Z) - Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the
Predictive Uncertainties [12.068153197381575]
高速収束を達成しつつ、潜在過程間の共分散を維持できる新しい変分族を提案する。
新しいアプローチの効率的な実装を提供し、それをいくつかのベンチマークデータセットに適用します。
優れた結果をもたらし、最先端の代替品よりも精度とキャリブレーションされた不確実性推定とのバランスが良くなる。
論文 参考訳(メタデータ) (2020-05-22T11:10:59Z) - Certified Robustness to Label-Flipping Attacks via Randomized Smoothing [105.91827623768724]
機械学習アルゴリズムは、データ中毒攻撃の影響を受けやすい。
任意の関数に対するランダム化スムージングの統一的なビューを示す。
本稿では,一般的なデータ中毒攻撃に対して,ポイントワイズで確実に堅牢な分類器を構築するための新しい戦略を提案する。
論文 参考訳(メタデータ) (2020-02-07T21:28:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。