論文の概要: Machine Learning in management of precautionary closures caused by
lipophilic biotoxins
- arxiv url: http://arxiv.org/abs/2402.09266v1
- Date: Wed, 14 Feb 2024 15:51:58 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-15 14:43:28.229796
- Title: Machine Learning in management of precautionary closures caused by
lipophilic biotoxins
- Title(参考訳): 脂肪親和性バイオトキシンによる予防的閉鎖管理における機械学習
- Authors: Andres Molares-Ulloa, Enrique Fernandez-Blanco, Alejandro Pazos and
Daniel Rivero
- Abstract要約: ムッセル農業は最も重要な水産産業の1つである。
ムッセル農業の主なリスクは有害な藻類開花(HABs)であり、人間の消費に危険をもたらす。
本研究は,予防的クロージャの適用を支援する予測モデルを提案する。
- 参考スコア(独自算出の注目度): 43.51581973358462
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Mussel farming is one of the most important aquaculture industries. The main
risk to mussel farming is harmful algal blooms (HABs), which pose a risk to
human consumption. In Galicia, the Spanish main producer of cultivated mussels,
the opening and closing of the production areas is controlled by a monitoring
program. In addition to the closures resulting from the presence of toxicity
exceeding the legal threshold, in the absence of a confirmatory sampling and
the existence of risk factors, precautionary closures may be applied. These
decisions are made by experts without the support or formalisation of the
experience on which they are based. Therefore, this work proposes a predictive
model capable of supporting the application of precautionary closures.
Achieving sensitivity, accuracy and kappa index values of 97.34%, 91.83% and
0.75 respectively, the kNN algorithm has provided the best results. This allows
the creation of a system capable of helping in complex situations where
forecast errors are more common.
- Abstract(参考訳): ムッセル農業は最も重要な水産産業の1つである。
ムッセル農業の主なリスクは有害な藻類開花(HABs)であり、人間の消費に危険をもたらす。
スペインで栽培された貝類の主産地であるガリシアでは、生産エリアの開閉は監視プログラムによって制御されている。
法律上のしきい値を超える毒性の存在による閉鎖に加えて、確認的サンプリングの欠如とリスク要因の存在は、予防的閉鎖を適用できる。
これらの決定は、その基礎となる経験の支持や形式化を伴わない専門家によってなされる。
そこで本研究では,注意クロージャの適用を支援する予測モデルを提案する。
knnアルゴリズムは97.34%, 91.83%, 0.75の感度, 精度, およびkappaインデックス値をそれぞれ達成し, 最良の結果を得た。
これにより、予測エラーがより一般的な複雑な状況において、システムを構築することができる。
関連論文リスト
- "Nuclear Deployed!": Analyzing Catastrophic Risks in Decision-making of Autonomous LLM Agents [10.565508277042564]
大規模言語モデル(LLM)は、自律的な意思決定者へと進化し、ハイステークシナリオにおける破滅的なリスクに対する懸念を高めている。
このようなリスクは,エージェントのHelpful,Harmlessness,Hoest(HHH)目標間のトレードオフから生じる可能性があるという知見に基づいて,新しい3段階評価フレームワークを構築した。
14,400個のエージェントシミュレーションを12個の先進LDMで行い、広範囲な実験と分析を行った。
論文 参考訳(メタデータ) (2025-02-17T02:11:17Z) - Uncertainty Guarantees on Automated Precision Weeding using Conformal Prediction [0.5172964916120902]
本稿では,深層学習に基づく画像分類による精密雑草作業における共形予測について述べる。
共形予測手法の詳細なプレゼンテーションの後、このパイプラインを実世界の2つのシナリオで評価する。
以上の結果から,少なくとも90%の雑草散布が保証されていることが確認できた。
論文 参考訳(メタデータ) (2025-01-13T10:30:10Z) - Confidence Aware Learning for Reliable Face Anti-spoofing [52.23271636362843]
本稿では,その能力境界を意識した信頼認識顔アンチスプーフィングモデルを提案する。
各サンプルの予測中にその信頼性を推定する。
実験の結果,提案したCA-FASは予測精度の低いサンプルを効果的に認識できることがわかった。
論文 参考訳(メタデータ) (2024-11-02T14:29:02Z) - Conformal Generative Modeling with Improved Sample Efficiency through Sequential Greedy Filtering [55.15192437680943]
生成モデルは出力に対する厳密な統計的保証を欠いている。
厳密な統計的保証を満たす予測セットを生成する逐次共形予測法を提案する。
このことは、高い確率で予測セットが少なくとも1つの許容可能な(または有効な)例を含むことを保証している。
論文 参考訳(メタデータ) (2024-10-02T15:26:52Z) - Criticality and Safety Margins for Reinforcement Learning [53.10194953873209]
我々は,定量化基盤真理とユーザにとっての明確な意義の両面から,批判的枠組みを定めようとしている。
エージェントがn連続的ランダム動作に対するポリシーから逸脱した場合の報酬の減少として真臨界を導入する。
我々はまた、真の臨界と統計的に単調な関係を持つ低オーバーヘッド計量であるプロキシ臨界の概念も導入する。
論文 参考訳(メタデータ) (2024-09-26T21:00:45Z) - Explainable machine learning for predicting shellfish toxicity in the Adriatic Sea using long-term monitoring data of HABs [0.0]
我々は,魚介類中毒を正確に予測するために,機械学習モデルを訓練し,評価する。
The random forest model provided the best prediction of positive toxicity results based on the F1 score。
主要な種(Dinophysis fortii, D. caudata)と環境要因(塩分濃度, 河川排出量, 降水量)はDSPの発生の予測因子として最適であった。
論文 参考訳(メタデータ) (2024-05-07T14:55:42Z) - Data-Adaptive Tradeoffs among Multiple Risks in Distribution-Free Prediction [55.77015419028725]
しきい値とトレードオフパラメータが適応的に選択された場合、リスクの有効な制御を可能にする手法を開発する。
提案手法は単調なリスクとほぼ単調なリスクをサポートするが,それ以外は分布的な仮定はしない。
論文 参考訳(メタデータ) (2024-03-28T17:28:06Z) - Hybrid Machine Learning techniques in the management of harmful algal
blooms impact [0.7864304771129751]
軟体動物栽培はハーモフル藻類(HAB)の影響を受けうる
HABは高濃度の藻のエピソードであり、人間の消費に有害である可能性がある。
人的消費のリスクを避けるため、毒性が検出されると収穫が禁止される。
論文 参考訳(メタデータ) (2024-02-14T15:59:22Z) - Task-Driven Causal Feature Distillation: Towards Trustworthy Risk
Prediction [19.475933293993076]
本稿では,タスク駆動型因果的特徴蒸留モデル(TDCFD)を提案し,元の特徴値を因果的特徴属性に変換する。
因果的特徴蒸留後、信頼に値する予測結果を得るためにディープニューラルネットワークを適用する。
合成および実データを用いたTDCFD法の性能評価を行った。
論文 参考訳(メタデータ) (2023-12-20T08:16:53Z) - PAC$^m$-Bayes: Narrowing the Empirical Risk Gap in the Misspecified
Bayesian Regime [75.19403612525811]
この研究は、2つのリスク間のトレードオフを分散することでギャップを埋めることのできるマルチサンプル損失を開発する。
実証的研究は予測分布の改善を示す。
論文 参考訳(メタデータ) (2020-10-19T16:08:34Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。