Learning Using a Single Forward Pass
- URL: http://arxiv.org/abs/2402.09769v3
- Date: Thu, 05 Jun 2025 05:31:07 GMT
- Title: Learning Using a Single Forward Pass
- Authors: Aditya Somasundaram, Pushkal Mishra, Ayon Borthakur,
- Abstract summary: Solo Pass Embedded Learning Algorithm (SPELA) is proposed to overcome the limitations of traditional backpropagation in resource-constrained environments.<n>SPELA operates with local loss functions to update weights, significantly saving on resources allocated to the propagation of gradients and storing computational graphs.<n>Our results indicate that SPELA, with its features such as local learning and early exit, is a potential candidate for learning in resource-constrained edge AI applications.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a learning algorithm to overcome the limitations of traditional backpropagation in resource-constrained environments: Solo Pass Embedded Learning Algorithm (SPELA). SPELA operates with local loss functions to update weights, significantly saving on resources allocated to the propagation of gradients and storing computational graphs while being sufficiently accurate. Consequently, SPELA can closely match backpropagation using less memory. Moreover, SPELA can effectively fine-tune pre-trained image recognition models for new tasks. Further, SPELA is extended with significant modifications to train CNN networks, which we evaluate on CIFAR-10, CIFAR-100, and SVHN 10 datasets, showing equivalent performance compared to backpropagation. Our results indicate that SPELA, with its features such as local learning and early exit, is a potential candidate for learning in resource-constrained edge AI applications.
Related papers
- Efficient Machine Unlearning via Influence Approximation [75.31015485113993]
Influence-based unlearning has emerged as a prominent approach to estimate the impact of individual training samples on model parameters without retraining.<n>This paper establishes a theoretical link between memorizing (incremental learning) and forgetting (unlearning)<n>We introduce the Influence Approximation Unlearning algorithm for efficient machine unlearning from the incremental perspective.
arXiv Detail & Related papers (2025-07-31T05:34:27Z) - A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learning is a novel unified framework for learning with neural networks "over time"
It is based on differential equations that: (i) can be integrated without the need of external software solvers; (ii) generalize the well-established notion of gradient-based learning in feed-forward and recurrent networks; (iii) open to novel perspectives.
arXiv Detail & Related papers (2024-09-18T14:57:13Z) - Self-Contrastive Forward-Forward Algorithm [3.1361717406527667]
Forward-Forward (FF) algorithm relies on feedforward operations to optimize layer-wise objectives.<n>FF has failed to reach state-of-the-art performance on most standard benchmark tasks.<n>We propose Self-Contrastive Forward-Forward (SCFF) algorithm, a competitive training method aimed at closing this performance gap.
arXiv Detail & Related papers (2024-09-17T22:58:20Z) - Distance-Forward Learning: Enhancing the Forward-Forward Algorithm Towards High-Performance On-Chip Learning [20.037634881772842]
Forward-Forward (FF) algorithm was recently proposed as a local learning method to address the limitations of backpropagation (BP)
We reformulate FF using distance metric learning and propose a distance-forward algorithm (DF) to improve FF performance in supervised vision tasks.
Our method surpasses existing FF models and other advanced local learning approaches, with accuracies of 99.7% on MNIST, 88.2% on CIFAR-10, 59% on CIFAR-100, 95.9% on SVHN, and 82.5% on ImageNette.
arXiv Detail & Related papers (2024-08-27T10:01:43Z) - Towards Robust and Parameter-Efficient Knowledge Unlearning for LLMs [25.91643745340183]
Large Language Models (LLMs) have demonstrated strong reasoning and memorization capabilities via pretraining on massive textual corpora.
This poses risk of privacy and copyright violations, highlighting the need for efficient machine unlearning methods.
We propose Low-rank Knowledge Unlearning (LoKU), a novel framework that enables robust and efficient unlearning for LLMs.
arXiv Detail & Related papers (2024-08-13T04:18:32Z) - Beyond Prompt Learning: Continual Adapter for Efficient Rehearsal-Free Continual Learning [22.13331870720021]
We propose a beyond prompt learning approach to the RFCL task, called Continual Adapter (C-ADA)
C-ADA flexibly extends specific weights in CAL to learn new knowledge for each task and freezes old weights to preserve prior knowledge.
Our approach achieves significantly improved performance and training speed, outperforming the current state-of-the-art (SOTA) method.
arXiv Detail & Related papers (2024-07-14T17:40:40Z) - iNeMo: Incremental Neural Mesh Models for Robust Class-Incremental Learning [22.14627083675405]
We propose incremental neural mesh models that can be extended with new meshes over time.
We demonstrate the effectiveness of our method through extensive experiments on the Pascal3D and ObjectNet3D datasets.
Our work also presents the first incremental learning approach for pose estimation.
arXiv Detail & Related papers (2024-07-12T13:57:49Z) - Mind the Interference: Retaining Pre-trained Knowledge in Parameter Efficient Continual Learning of Vision-Language Models [79.28821338925947]
Domain-Class Incremental Learning is a realistic but challenging continual learning scenario.
To handle these diverse tasks, pre-trained Vision-Language Models (VLMs) are introduced for their strong generalizability.
This incurs a new problem: the knowledge encoded in the pre-trained VLMs may be disturbed when adapting to new tasks, compromising their inherent zero-shot ability.
Existing methods tackle it by tuning VLMs with knowledge distillation on extra datasets, which demands heavy overhead.
We propose the Distribution-aware Interference-free Knowledge Integration (DIKI) framework, retaining pre-trained knowledge of
arXiv Detail & Related papers (2024-07-07T12:19:37Z) - Employing Layerwised Unsupervised Learning to Lessen Data and Loss Requirements in Forward-Forward Algorithms [1.0514231683620516]
Forward-Forward algorithm trains deep learning models solely through the forward pass.
We propose an Unsupervised Forward-Forward algorithm to replace back-propagation.
We lead to stable learning and enable versatile utilization across various datasets and tasks.
arXiv Detail & Related papers (2024-04-23T01:49:12Z) - Learning Prompt with Distribution-Based Feature Replay for Few-Shot Class-Incremental Learning [56.29097276129473]
We propose a simple yet effective framework, named Learning Prompt with Distribution-based Feature Replay (LP-DiF)<n>To prevent the learnable prompt from forgetting old knowledge in the new session, we propose a pseudo-feature replay approach.<n>When progressing to a new session, pseudo-features are sampled from old-class distributions combined with training images of the current session to optimize the prompt.
arXiv Detail & Related papers (2024-01-03T07:59:17Z) - Towards Robust Continual Learning with Bayesian Adaptive Moment Regularization [51.34904967046097]
Continual learning seeks to overcome the challenge of catastrophic forgetting, where a model forgets previously learnt information.
We introduce a novel prior-based method that better constrains parameter growth, reducing catastrophic forgetting.
Results show that BAdam achieves state-of-the-art performance for prior-based methods on challenging single-headed class-incremental experiments.
arXiv Detail & Related papers (2023-09-15T17:10:51Z) - PILOT: A Pre-Trained Model-Based Continual Learning Toolbox [71.63186089279218]
This paper introduces a pre-trained model-based continual learning toolbox known as PILOT.
On the one hand, PILOT implements some state-of-the-art class-incremental learning algorithms based on pre-trained models, such as L2P, DualPrompt, and CODA-Prompt.
On the other hand, PILOT fits typical class-incremental learning algorithms within the context of pre-trained models to evaluate their effectiveness.
arXiv Detail & Related papers (2023-09-13T17:55:11Z) - Efficient and Flexible Neural Network Training through Layer-wise Feedback Propagation [49.44309457870649]
Layer-wise Feedback feedback (LFP) is a novel training principle for neural network-like predictors.<n>LFP decomposes a reward to individual neurons based on their respective contributions.<n>Our method then implements a greedy reinforcing approach helpful parts of the network and weakening harmful ones.
arXiv Detail & Related papers (2023-08-23T10:48:28Z) - CTP: Towards Vision-Language Continual Pretraining via Compatible
Momentum Contrast and Topology Preservation [128.00940554196976]
Vision-Language Continual Pretraining (VLCP) has shown impressive results on diverse downstream tasks by offline training on large-scale datasets.
To support the study of Vision-Language Continual Pretraining (VLCP), we first contribute a comprehensive and unified benchmark dataset P9D.
The data from each industry as an independent task supports continual learning and conforms to the real-world long-tail nature to simulate pretraining on web data.
arXiv Detail & Related papers (2023-08-14T13:53:18Z) - IF2Net: Innately Forgetting-Free Networks for Continual Learning [49.57495829364827]
Continual learning can incrementally absorb new concepts without interfering with previously learned knowledge.
Motivated by the characteristics of neural networks, we investigated how to design an Innately Forgetting-Free Network (IF2Net)
IF2Net allows a single network to inherently learn unlimited mapping rules without telling task identities at test time.
arXiv Detail & Related papers (2023-06-18T05:26:49Z) - Scaling Forward Gradient With Local Losses [117.22685584919756]
Forward learning is a biologically plausible alternative to backprop for learning deep neural networks.
We show that it is possible to substantially reduce the variance of the forward gradient by applying perturbations to activations rather than weights.
Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.
arXiv Detail & Related papers (2022-10-07T03:52:27Z) - Less is More: Rethinking Few-Shot Learning and Recurrent Neural Nets [2.824895388993495]
We provide theoretical guarantees for reliable learning under the information-theoretic AEP.
We then focus on a highly efficient recurrent neural net (RNN) framework and propose a reduced-entropy algorithm for few-shot learning.
Our experimental results demonstrate significant potential for improving learning models' sample efficiency, generalization, and time complexity.
arXiv Detail & Related papers (2022-09-28T17:33:11Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Neural Maximum A Posteriori Estimation on Unpaired Data for Motion
Deblurring [87.97330195531029]
We propose a Neural Maximum A Posteriori (NeurMAP) estimation framework for training neural networks to recover blind motion information and sharp content from unpaired data.
The proposed NeurMAP is an approach to existing deblurring neural networks, and is the first framework that enables training image deblurring networks on unpaired datasets.
arXiv Detail & Related papers (2022-04-26T08:09:47Z) - Gone Fishing: Neural Active Learning with Fisher Embeddings [55.08537975896764]
There is an increasing need for active learning algorithms that are compatible with deep neural networks.
This article introduces BAIT, a practical representation of tractable, and high-performing active learning algorithm for neural networks.
arXiv Detail & Related papers (2021-06-17T17:26:31Z) - Analytically Tractable Inference in Deep Neural Networks [0.0]
Tractable Approximate Inference (TAGI) algorithm was shown to be a viable and scalable alternative to backpropagation for shallow fully-connected neural networks.
We are demonstrating how TAGI matches or exceeds the performance of backpropagation, for training classic deep neural network architectures.
arXiv Detail & Related papers (2021-03-09T14:51:34Z) - CosSGD: Nonlinear Quantization for Communication-efficient Federated
Learning [62.65937719264881]
Federated learning facilitates learning across clients without transferring local data on these clients to a central server.
We propose a nonlinear quantization for compressed gradient descent, which can be easily utilized in federated learning.
Our system significantly reduces the communication cost by up to three orders of magnitude, while maintaining convergence and accuracy of the training process.
arXiv Detail & Related papers (2020-12-15T12:20:28Z) - Modeling Token-level Uncertainty to Learn Unknown Concepts in SLU via
Calibrated Dirichlet Prior RNN [98.4713940310056]
One major task of spoken language understanding (SLU) in modern personal assistants is to extract semantic concepts from an utterance.
Recent research collected question and answer annotated data to learn what is unknown and should be asked.
We incorporate softmax-based slot filling neural architectures to model the sequence uncertainty without question supervision.
arXiv Detail & Related papers (2020-10-16T02:12:30Z) - Neuromodulated Neural Architectures with Local Error Signals for
Memory-Constrained Online Continual Learning [4.2903672492917755]
We develop a biologically-inspired light weight neural network architecture that incorporates local learning and neuromodulation.
We demonstrate the efficacy of our approach on both single task and continual learning setting.
arXiv Detail & Related papers (2020-07-16T07:41:23Z) - RIFLE: Backpropagation in Depth for Deep Transfer Learning through
Re-Initializing the Fully-connected LayEr [60.07531696857743]
Fine-tuning the deep convolution neural network(CNN) using a pre-trained model helps transfer knowledge learned from larger datasets to the target task.
We propose RIFLE - a strategy that deepens backpropagation in transfer learning settings.
RIFLE brings meaningful updates to the weights of deep CNN layers and improves low-level feature learning.
arXiv Detail & Related papers (2020-07-07T11:27:43Z) - OvA-INN: Continual Learning with Invertible Neural Networks [0.0]
OvA-INN is able to learn one class at a time and without storing any of the previous data.
We show that we can take advantage of pretrained models by stacking an Invertible Network on top of a feature extractor.
arXiv Detail & Related papers (2020-06-24T14:40:05Z) - Incremental Learning for End-to-End Automatic Speech Recognition [41.297106772785206]
We propose an incremental learning method for end-to-end Automatic Speech Recognition (ASR)
We design a novel explainability-based knowledge distillation for ASR models, which is combined with a response-based knowledge distillation to maintain the original model's predictions and the "reason" for the predictions.
Results on a multi-stage sequential training task show that our method outperforms existing ones in mitigating forgetting.
arXiv Detail & Related papers (2020-05-11T08:18:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.