論文の概要: Explaining Kernel Clustering via Decision Trees
- arxiv url: http://arxiv.org/abs/2402.09881v1
- Date: Thu, 15 Feb 2024 11:08:23 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-16 16:06:10.911012
- Title: Explaining Kernel Clustering via Decision Trees
- Title(参考訳): 決定木によるカーネルクラスタリングの解説
- Authors: Maximilian Fleissner, Leena Chennuru Vankadara, Debarghya
Ghoshdastidar
- Abstract要約: 解釈可能なカーネルクラスタリングについて検討し、カーネルk-meansによって誘導されるパーティションを近似するために決定木を構築するアルゴリズムを提案する。
本稿は,k-meansに関する従来の研究に基づいて,解釈可能なモデルの近似保証を犠牲にすることなく,適切な特徴の選択が解釈可能性の維持を可能にすることを実証する。
- 参考スコア(独自算出の注目度): 10.504801686625129
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite the growing popularity of explainable and interpretable machine
learning, there is still surprisingly limited work on inherently interpretable
clustering methods. Recently, there has been a surge of interest in explaining
the classic k-means algorithm, leading to efficient algorithms that approximate
k-means clusters using axis-aligned decision trees. However, interpretable
variants of k-means have limited applicability in practice, where more flexible
clustering methods are often needed to obtain useful partitions of the data. In
this work, we investigate interpretable kernel clustering, and propose
algorithms that construct decision trees to approximate the partitions induced
by kernel k-means, a nonlinear extension of k-means. We further build on
previous work on explainable k-means and demonstrate how a suitable choice of
features allows preserving interpretability without sacrificing approximation
guarantees on the interpretable model.
- Abstract(参考訳): 説明可能で解釈可能な機械学習の人気が高まっているが、本質的に解釈可能なクラスタリング方法に関する作業は驚くほど限られている。
近年、古典的なk平均アルゴリズムの説明への関心が高まっており、軸整列決定木を用いてk平均クラスターを近似する効率的なアルゴリズムが導かれる。
しかしながら、k-meansの解釈可能な変種は、データの有用な分割を得るためにより柔軟なクラスタリング方法が必要となる場合、実際には適用性が限られている。
本研究では,k-meansの非線形拡張であるkernel k-meansによって引き起こされる分割を近似する決定木を構築するアルゴリズムを提案する。
我々はさらに,説明可能なk-means に関する先行研究をさらに深め,機能の適切な選択によって,解釈可能なモデルの近似保証を犠牲にすることなく,解釈可能性を保存することができることを示す。
関連論文リスト
- Self-Supervised Graph Embedding Clustering [70.36328717683297]
K-means 1-step dimensionality reduction clustering method は,クラスタリングタスクにおける次元性の呪いに対処する上で,いくつかの進歩をもたらした。
本稿では,K-meansに多様体学習を統合する統一フレームワークを提案する。
論文 参考訳(メタデータ) (2024-09-24T08:59:51Z) - Wide Gaps and Clustering Axioms [0.0]
k-平均は、距離に基づくクラスタリングアルゴリズムのためのクラインバーグの公理系と矛盾している。
我々は,2つの新しいクラスタビリティ特性,変分k-分離性と残留k-分離性を導入する。
我々は、k-meansを、ユークリッドおよび非ユークリッドセッティングにおけるクラインバーグの公理的フレームワークと照合する。
論文 参考訳(メタデータ) (2023-08-07T10:43:48Z) - Rethinking k-means from manifold learning perspective [122.38667613245151]
平均推定なしで直接データのクラスタを検出する新しいクラスタリングアルゴリズムを提案する。
具体的には,バタワースフィルタを用いてデータ点間の距離行列を構成する。
異なる視点に埋め込まれた相補的な情報をうまく活用するために、テンソルのSchatten p-norm正規化を利用する。
論文 参考訳(メタデータ) (2023-05-12T03:01:41Z) - Sketch-and-solve approaches to k-means clustering by semidefinite
programming [14.930208990741132]
我々は,k-meansクラスタリングのPeng-Wei半定緩和を高速化するためのスケッチ・アンド・ソルジ手法を提案する。
データが適切に分離された場合、k平均の最適なクラスタリングを特定する。
そうでなければ、我々のアプローチは最適k-平均値に高信頼な下界を与える。
論文 参考訳(メタデータ) (2022-11-28T19:51:30Z) - A One-shot Framework for Distributed Clustered Learning in Heterogeneous
Environments [54.172993875654015]
異種環境における分散学習のためのコミュニケーション効率化手法のファミリーを提案する。
ユーザによるローカル計算に基づくワンショットアプローチと、サーバにおけるクラスタリングベースのアグリゲーションステップは、強力な学習保証を提供する。
厳密な凸問題に対しては,ユーザ毎のデータ点数がしきい値を超える限り,提案手法はサンプルサイズの観点から順序最適平均二乗誤差率を達成する。
論文 参考訳(メタデータ) (2022-09-22T09:04:10Z) - Perfect Spectral Clustering with Discrete Covariates [68.8204255655161]
本稿では,大規模なスパースネットワークのクラスにおいて,高い確率で完全クラスタリングを実現するスペクトルアルゴリズムを提案する。
本手法は,スペクトルクラスタリングによる一貫した潜在構造回復を保証する最初の方法である。
論文 参考訳(メタデータ) (2022-05-17T01:41:06Z) - Adaptive Explicit Kernel Minkowski Weighted K-means [1.3535770763481905]
カーネル K-平均は、K-平均をカーネル空間に拡張し、非線形構造を捉えることができ、任意の形状のクラスターを識別することができる。
本稿では, 線形および非線形アプローチの利点を, 駆動された対応する有限次元特徴写像を用いて組み合わせる手法を提案する。
論文 参考訳(メタデータ) (2020-12-04T19:14:09Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
既存のスケーラブルな階層的クラスタリング手法は、スピードの質を犠牲にする。
我々は、品質を犠牲にせず、数十億のデータポイントまでスケールする、スケーラブルで集約的な階層的クラスタリング法を提案する。
論文 参考訳(メタデータ) (2020-10-22T15:58:35Z) - Differentially Private Clustering: Tight Approximation Ratios [57.89473217052714]
基本的なクラスタリング問題に対して,効率的な微分プライベートアルゴリズムを提案する。
この結果から,SampleとAggregateのプライバシーフレームワークのアルゴリズムの改善が示唆された。
1-Clusterアルゴリズムで使用されるツールの1つは、ClosestPairのより高速な量子アルゴリズムを適度な次元で得るために利用できる。
論文 参考訳(メタデータ) (2020-08-18T16:22:06Z) - A generalized Bayes framework for probabilistic clustering [3.3194866396158]
k平均とその変種のようなロスベースのクラスタリング手法は、データ内のグループを見つけるための標準ツールである。
混合モデルに基づくモデルベースのクラスタリングは代替手段を提供するが、そのような手法は計算上の問題に直面し、カーネルの選択に対して大きな感度を持つ。
本稿では,これらの2つのパラダイムをGibs後続法を用いてブリッジする一般化ベイズフレームワークを提案する。
論文 参考訳(メタデータ) (2020-06-09T18:49:32Z) - Simple and Scalable Sparse k-means Clustering via Feature Ranking [14.839931533868176]
直感的で実装が簡単で,最先端のアルゴリズムと競合する,スパースk平均クラスタリングのための新しいフレームワークを提案する。
本手法は,属性のサブセットのクラスタリングや部分的に観測されたデータ設定など,タスク固有のアルゴリズムに容易に一般化できる。
論文 参考訳(メタデータ) (2020-02-20T02:41:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。