GaussianObject: High-Quality 3D Object Reconstruction from Four Views with Gaussian Splatting
- URL: http://arxiv.org/abs/2402.10259v4
- Date: Wed, 13 Nov 2024 17:35:00 GMT
- Title: GaussianObject: High-Quality 3D Object Reconstruction from Four Views with Gaussian Splatting
- Authors: Chen Yang, Sikuang Li, Jiemin Fang, Ruofan Liang, Lingxi Xie, Xiaopeng Zhang, Wei Shen, Qi Tian,
- Abstract summary: Reconstructing and rendering 3D objects from highly sparse views is of critical importance for promoting applications of 3D vision techniques.
GaussianObject is a framework to represent and render the 3D object with Gaussian splatting that achieves high rendering quality with only 4 input images.
GaussianObject is evaluated on several challenging datasets, including MipNeRF360, OmniObject3D, OpenIllumination, and our-collected unposed images.
- Score: 82.29476781526752
- License:
- Abstract: Reconstructing and rendering 3D objects from highly sparse views is of critical importance for promoting applications of 3D vision techniques and improving user experience. However, images from sparse views only contain very limited 3D information, leading to two significant challenges: 1) Difficulty in building multi-view consistency as images for matching are too few; 2) Partially omitted or highly compressed object information as view coverage is insufficient. To tackle these challenges, we propose GaussianObject, a framework to represent and render the 3D object with Gaussian splatting that achieves high rendering quality with only 4 input images. We first introduce techniques of visual hull and floater elimination, which explicitly inject structure priors into the initial optimization process to help build multi-view consistency, yielding a coarse 3D Gaussian representation. Then we construct a Gaussian repair model based on diffusion models to supplement the omitted object information, where Gaussians are further refined. We design a self-generating strategy to obtain image pairs for training the repair model. We further design a COLMAP-free variant, where pre-given accurate camera poses are not required, which achieves competitive quality and facilitates wider applications. GaussianObject is evaluated on several challenging datasets, including MipNeRF360, OmniObject3D, OpenIllumination, and our-collected unposed images, achieving superior performance from only four views and significantly outperforming previous SOTA methods. Our demo is available at https://gaussianobject.github.io/, and the code has been released at https://github.com/GaussianObject/GaussianObject.
Related papers
- NovelGS: Consistent Novel-view Denoising via Large Gaussian Reconstruction Model [57.92709692193132]
NovelGS is a diffusion model for Gaussian Splatting given sparse-view images.
We leverage the novel view denoising through a transformer-based network to generate 3D Gaussians.
arXiv Detail & Related papers (2024-11-25T07:57:17Z) - No Pose, No Problem: Surprisingly Simple 3D Gaussian Splats from Sparse Unposed Images [100.80376573969045]
NoPoSplat is a feed-forward model capable of reconstructing 3D scenes parameterized by 3D Gaussians from multi-view images.
Our model achieves real-time 3D Gaussian reconstruction during inference.
This work makes significant advances in pose-free generalizable 3D reconstruction and demonstrates its applicability to real-world scenarios.
arXiv Detail & Related papers (2024-10-31T17:58:22Z) - HiSplat: Hierarchical 3D Gaussian Splatting for Generalizable Sparse-View Reconstruction [46.269350101349715]
HiSplat is a novel framework for generalizable 3D Gaussian Splatting.
It generates hierarchical 3D Gaussians via a coarse-to-fine strategy.
It significantly enhances reconstruction quality and cross-dataset generalization.
arXiv Detail & Related papers (2024-10-08T17:59:32Z) - Self-augmented Gaussian Splatting with Structure-aware Masks for Sparse-view 3D Reconstruction [9.953394373473621]
Sparse-view 3D reconstruction is a formidable challenge in computer vision.
We propose a self-augmented coarse-to-fine Gaussian splatting paradigm, enhanced with a structure-aware mask.
Our method achieves state-of-the-art performances for sparse input views in both perceptual quality and efficiency.
arXiv Detail & Related papers (2024-08-09T03:09:22Z) - GSD: View-Guided Gaussian Splatting Diffusion for 3D Reconstruction [52.04103235260539]
We present a diffusion model approach based on Gaussian Splatting representation for 3D object reconstruction from a single view.
The model learns to generate 3D objects represented by sets of GS ellipsoids.
The final reconstructed objects explicitly come with high-quality 3D structure and texture, and can be efficiently rendered in arbitrary views.
arXiv Detail & Related papers (2024-07-05T03:43:08Z) - Dynamic Gaussian Marbles for Novel View Synthesis of Casual Monocular Videos [58.22272760132996]
We show that existing 4D Gaussian methods dramatically fail in this setup because the monocular setting is underconstrained.
We propose Dynamic Gaussian Marbles, which consist of three core modifications that target the difficulties of the monocular setting.
We evaluate on the Nvidia Dynamic Scenes dataset and the DyCheck iPhone dataset, and show that Gaussian Marbles significantly outperforms other Gaussian baselines in quality.
arXiv Detail & Related papers (2024-06-26T19:37:07Z) - CoherentGS: Sparse Novel View Synthesis with Coherent 3D Gaussians [18.42203035154126]
We introduce a structured Gaussian representation that can be controlled in 2D image space.
We then constraint the Gaussians, in particular their position, and prevent them from moving independently during optimization.
We demonstrate significant improvements compared to the state-of-the-art sparse-view NeRF-based approaches on a variety of scenes.
arXiv Detail & Related papers (2024-03-28T15:27:13Z) - AGG: Amortized Generative 3D Gaussians for Single Image to 3D [108.38567665695027]
We introduce an Amortized Generative 3D Gaussian framework (AGG) that instantly produces 3D Gaussians from a single image.
AGG decomposes the generation of 3D Gaussian locations and other appearance attributes for joint optimization.
We propose a cascaded pipeline that first generates a coarse representation of the 3D data and later upsamples it with a 3D Gaussian super-resolution module.
arXiv Detail & Related papers (2024-01-08T18:56:33Z) - Sparse-view CT Reconstruction with 3D Gaussian Volumetric Representation [13.667470059238607]
Sparse-view CT is a promising strategy for reducing the radiation dose of traditional CT scans.
Recently, 3D Gaussian has been applied to model complex natural scenes.
We investigate their potential for sparse-view CT reconstruction.
arXiv Detail & Related papers (2023-12-25T09:47:33Z) - Compact 3D Gaussian Representation for Radiance Field [14.729871192785696]
We propose a learnable mask strategy to reduce the number of 3D Gaussian points without sacrificing performance.
We also propose a compact but effective representation of view-dependent color by employing a grid-based neural field.
Our work provides a comprehensive framework for 3D scene representation, achieving high performance, fast training, compactness, and real-time rendering.
arXiv Detail & Related papers (2023-11-22T20:31:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.