論文の概要: JetTrain: IDE-Native Machine Learning Experiments
- arxiv url: http://arxiv.org/abs/2402.10857v1
- Date: Fri, 16 Feb 2024 17:53:08 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 15:05:44.109279
- Title: JetTrain: IDE-Native Machine Learning Experiments
- Title(参考訳): JetTrain: IDE指向の機械学習実験
- Authors: Artem Trofimov, Mikhail Kostyukov, Sergei Ugdyzhekov, Natalia
Ponomareva, Igor Naumov, Maksim Melekhovets
- Abstract要約: JetTrainは、機械学習(ML)実験をローンチするための統合開発環境(IDE)ツールである。
ユーザはローカルでコードを書いてデバッグし、オンデマンドのハードウェアを使ってリモートでシームレスに実行できる。
このアプローチは、MLトレーニング問題の参入障壁を低くし、実験スループットを向上させることができると我々は主張する。
- 参考スコア(独自算出の注目度): 4.23507375452691
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Integrated development environments (IDEs) are prevalent code-writing and
debugging tools. However, they have yet to be widely adopted for launching
machine learning (ML) experiments. This work aims to fill this gap by
introducing JetTrain, an IDE-integrated tool that delegates specific tasks from
an IDE to remote computational resources. A user can write and debug code
locally and then seamlessly run it remotely using on-demand hardware. We argue
that this approach can lower the entry barrier for ML training problems and
increase experiment throughput.
- Abstract(参考訳): 統合開発環境(IDE)は一般的なコード記述およびデバッグツールである。
しかし、機械学習(ml)実験の開始にはまだ広く採用されていない。
この作業は、IDEからリモート計算リソースに特定のタスクを委譲するIDE統合ツールであるJetTrainを導入することで、このギャップを埋めることを目的としている。
ユーザはローカルでコードを書いてデバッグし、オンデマンドのハードウェアを使ってリモートでシームレスに実行できる。
このアプローチは、MLトレーニング問題の参入障壁を低くし、実験スループットを向上させることができる。
関連論文リスト
- A New Generation of Intelligent Development Environments [0.0]
プログラミングの実践は、AI支援開発(コパイロット)の導入と、新しいプログラミング言語の作成によって、革命を遂げている。
本稿では,統合開発環境を統合開発環境からインテリジェント開発環境へ転換するビジョンを提案する。
論文 参考訳(メタデータ) (2024-06-13T20:33:25Z) - Full Line Code Completion: Bringing AI to Desktop [3.5296482958373447]
JetBrainsのIntelliJ Platform用のマルチトークンコード補完機能を構築するためのアプローチについて説明する。
この機能は構文的に正しいコードのみを推奨し、ローカルで完全に動作する。
論文 参考訳(メタデータ) (2024-05-14T15:42:55Z) - On the Integration of Spectrum-Based Fault Localization Tools into IDEs [1.641101482398716]
SBFLは軽量で実装が容易であるため、研究者の間で人気がある。
有効性向上を目的とした研究には、多くの可能性がある。
少数の研究用プロトタイプが利用可能である。
論文 参考訳(メタデータ) (2024-03-18T07:43:31Z) - Tool-Augmented LLMs as a Universal Interface for IDEs [0.768721532845575]
自然言語対話とコード生成の両方が可能な大規模言語モデル(LLM)は、統合開発環境(IDE)の概念の陳腐化を論じる。
ユーザコマンドで複数のIDE機能を含む複雑なアクションを実行でき、オプションやアクションを検索する際の面倒な作業のユーザエクスペリエンスを削除できるモデルを構想する。
論文 参考訳(メタデータ) (2024-02-18T16:32:28Z) - Bridging Education and Development: IDEs as Interactive Learning
Platforms [1.5778293477627905]
このアプローチの主な目的は、学生を工業技術に精通させるという課題に対処することである。
このアプローチにより、学生は学習プロセスに完全に統合された近代的な産業用ツールをすぐに利用できる。
我々は既に40以上のコースでこの手法を適用しており、様々な話題にまたがる学生の教育に成功している。
論文 参考訳(メタデータ) (2024-01-25T16:15:56Z) - ControlLLM: Augment Language Models with Tools by Searching on Graphs [97.62758830255002]
我々は,大規模言語モデル(LLM)が実世界のタスクを解くためのマルチモーダルツールを利用できる新しいフレームワークであるControlLLMを提案する。
フレームワークは,(1)複雑なタスクを明確なサブタスクに分割し,入力と出力を適切に定義したサブタスクに分解するtextittask Decomposer,(2)構築済みのツールグラフ上で最適なソリューションパスを探索する textitThoughts-on-Graph(ToG)パラダイム,(3)ソリューションパスを解釈して実行するリッチなツールボックスを備えた textitexecution Engine,の3つの主要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-10-26T21:57:21Z) - CausalVLR: A Toolbox and Benchmark for Visual-Linguistic Causal
Reasoning [107.81733977430517]
CausalVLR(Causal Visual-Linguistic Reasoning)は、最先端の因果関係の発見と因果推論方法の豊富なセットを含むオープンソースのツールボックスである。
これらのメソッドはNVIDIAコンピューティングシステムの下でPyTorchを実装したツールボックスに含まれている。
論文 参考訳(メタデータ) (2023-06-30T08:17:38Z) - InterCode: Standardizing and Benchmarking Interactive Coding with
Execution Feedback [50.725076393314964]
標準的な強化学習環境として,インタラクティブコーディングの軽量でフレキシブルで使いやすいフレームワークであるInterCodeを紹介した。
私たちのフレームワークは、言語とプラットフォームに依存しない、自己完結型のDocker環境を使用して、安全で再現可能な実行を提供します。
我々は、異なるプロンプト戦略で構成された複数の最先端LLMを評価することにより、InterCodeの生存性をテストベッドとして示す。
論文 参考訳(メタデータ) (2023-06-26T17:59:50Z) - ConvLab-3: A Flexible Dialogue System Toolkit Based on a Unified Data
Format [88.33443450434521]
タスク指向対話(TOD)システムはデジタルアシスタントとして機能し、フライトの予約やレストランの検索といった様々なタスクを通じてユーザを誘導する。
TODシステムを構築するための既存のツールキットは、データ、モデル、実験環境の包括的な配列を提供するのに不足することが多い。
本稿では,このギャップを埋めるための多面的対話システムツールキットConvLab-3を紹介する。
論文 参考訳(メタデータ) (2022-11-30T16:37:42Z) - All You Need Is Logs: Improving Code Completion by Learning from
Anonymous IDE Usage Logs [55.606644084003094]
そこで本研究では,IDEのユーザからコンプリート利用ログを収集する手法を提案する。
機械学習ベースのモデルをトレーニングして、完成候補をランク付けします。
評価の結果,過去のユーザ動作ログに基づいてトレーニングした単純なランキングモデルを用いることで,コード補完エクスペリエンスが大幅に向上した。
論文 参考訳(メタデータ) (2022-05-21T23:21:26Z) - SMARTS: Scalable Multi-Agent Reinforcement Learning Training School for
Autonomous Driving [96.50297622371457]
マルチエージェントインタラクションは、現実の世界における自律運転の基本的な側面である。
研究と開発が10年以上続いたにもかかわらず、様々なシナリオで多様な道路ユーザーと対話する方法の問題は未解決のままである。
SMARTSと呼ばれる,多種多様な運転インタラクションを生成する専用シミュレーションプラットフォームを開発した。
論文 参考訳(メタデータ) (2020-10-19T18:26:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。