論文の概要: In-IDE Programming Courses: Learning Software Development in a Real-World Setting
- arxiv url: http://arxiv.org/abs/2501.17747v1
- Date: Wed, 29 Jan 2025 16:34:22 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-30 15:55:00.106349
- Title: In-IDE Programming Courses: Learning Software Development in a Real-World Setting
- Title(参考訳): In-IDEプログラミングコース: 現実世界でソフトウェア開発を学ぶ
- Authors: Anastasiia Birillo, Ilya Vlasov, Katsiaryna Dzialets, Hieke Keuning, Timofey Bryksin,
- Abstract要約: JetBrainsは最近JetBrains Academyプラグインをリリースした。
このプラグインを使って少なくとも1コースを修了した学生や開発者に対して,8回の1時間インタビューを行った。
- 参考スコア(独自算出の注目度): 5.330251011543498
- License:
- Abstract: While learning programming languages is crucial for software engineers, mastering the necessary tools is equally important. To facilitate this, JetBrains recently released the JetBrains Academy plugin, which customizes the IDE for learners, allowing tutors to create courses entirely within IDE. In this work, we provide the first exploratory study of this learning format. We carried out eight one-hour interviews with students and developers who completed at least one course using the plugin, inquiring about their experience with the format, the used IDE features, and the current shortcomings. Our results indicate that learning inside the IDE is overall welcomed by the learners, allowing them to study in a more realistic setting, using features such as debugging and code analysis, which are crucial for real software development. With the collected results and the analysis of the current drawbacks, we aim to contribute to teaching students more practical skills.
- Abstract(参考訳): プログラミング言語を学ぶことはソフトウェアエンジニアにとって重要だが、必要なツールを習得することは同じように重要である。
これを容易にするため、JetBrainsはJetBrains Academyプラグインをリリースした。このプラグインは学習者向けにIDEをカスタマイズし、チューターがIDE内で完全にコースを作成することができる。
本研究は,この学習形式に関する最初の探索的研究である。
我々は,少なくとも1コースのコースを完了した学生や開発者に対して,このフォーマットの経験,使用済みIDE機能,現在の欠点について,8回の1時間インタビューを行った。
以上の結果から,IDE内での学習は学習者によって全般的に歓迎され,デバッグやコード解析といった実際のソフトウェア開発に不可欠な機能を用いて,より現実的な環境下での学習が可能になることが示唆された。
収集した結果と現在の欠点の分析から,より実践的なスキルの教育に貢献することを目指す。
関連論文リスト
- Investigating Developers' Preferences for Learning and Issue Resolution Resources in the ChatGPT Era [1.3124513975412255]
最近のトレンドはビデオチュートリアルのような魅力的なフォーマットを好んでいる。
ChatGPTのような大規模言語モデル(LLM)の出現は、新しい学習パラダイムを提示します。
我々は,ソフトウェア開発者とコンピュータサイエンスの学生を対象に,341の回答を集め,そのうち268の回答を完成・分析した。
論文 参考訳(メタデータ) (2024-10-10T22:57:29Z) - A New Generation of Intelligent Development Environments [0.0]
プログラミングの実践は、AI支援開発(コパイロット)の導入と、新しいプログラミング言語の作成によって、革命を遂げている。
本稿では,統合開発環境を統合開発環境からインテリジェント開発環境へ転換するビジョンを提案する。
論文 参考訳(メタデータ) (2024-06-13T20:33:25Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
大規模言語モデル(LLM)を用いたツール学習は,高度に複雑な問題に対処するLLMの能力を強化するための,有望なパラダイムとして登場した。
この分野での注目と急速な進歩にもかかわらず、現存する文献は断片化され、体系的な組織が欠如している。
論文 参考訳(メタデータ) (2024-05-28T08:01:26Z) - Code Compass: A Study on the Challenges of Navigating Unfamiliar Codebases [2.808331566391181]
これらの問題に対処するための新しいツールであるCodeを提案する。
本研究は,現在のツールと方法論における大きなギャップを浮き彫りにしている。
私たちのフォーマティブな調査は、開発者がドキュメントをナビゲートする時間をいかに効率的に削減するかを示しています。
論文 参考訳(メタデータ) (2024-05-10T06:58:31Z) - Prompting Large Language Models to Tackle the Full Software Development Lifecycle: A Case Study [72.24266814625685]
DevEvalでソフトウェア開発ライフサイクル全体にわたって、大きな言語モデル(LLM)のパフォーマンスを調査します。
DevEvalは4つのプログラミング言語、複数のドメイン、高品質なデータ収集、各タスクに対して慎重に設計および検証されたメトリクスを備えている。
GPT-4を含む現在のLLMは、DevEvalで提示される課題を解決できないことが実証研究によって示されている。
論文 参考訳(メタデータ) (2024-03-13T15:13:44Z) - Tool-Augmented LLMs as a Universal Interface for IDEs [0.768721532845575]
自然言語対話とコード生成の両方が可能な大規模言語モデル(LLM)は、統合開発環境(IDE)の概念の陳腐化を論じる。
ユーザコマンドで複数のIDE機能を含む複雑なアクションを実行でき、オプションやアクションを検索する際の面倒な作業のユーザエクスペリエンスを削除できるモデルを構想する。
論文 参考訳(メタデータ) (2024-02-18T16:32:28Z) - Bridging Education and Development: IDEs as Interactive Learning
Platforms [1.5778293477627905]
このアプローチの主な目的は、学生を工業技術に精通させるという課題に対処することである。
このアプローチにより、学生は学習プロセスに完全に統合された近代的な産業用ツールをすぐに利用できる。
我々は既に40以上のコースでこの手法を適用しており、様々な話題にまたがる学生の教育に成功している。
論文 参考訳(メタデータ) (2024-01-25T16:15:56Z) - Collaborative, Code-Proximal Dynamic Software Visualization within Code
Editors [55.57032418885258]
本稿では,コードエディタに組み込むソフトウェアビジュアライゼーション手法の設計と実装について紹介する。
私たちのコントリビューションは、ソフトウェアシステムの実行時の動作の動的解析を使用するという点で、関連する作業と異なります。
私たちの視覚化アプローチは、一般的なリモートペアプログラミングツールを強化し、共有コード都市を利用することで協調的に使用できます。
論文 参考訳(メタデータ) (2023-08-30T06:35:40Z) - CodeTF: One-stop Transformer Library for State-of-the-art Code LLM [72.1638273937025]
我々は、最先端のCode LLMとコードインテリジェンスのためのオープンソースのTransformerベースのライブラリであるCodeTFを紹介する。
我々のライブラリは、事前訓練されたコードLLMモデルと人気のあるコードベンチマークのコレクションをサポートします。
CodeTFが機械学習/生成AIとソフトウェア工学のギャップを埋められることを願っている。
論文 参考訳(メタデータ) (2023-05-31T05:24:48Z) - All You Need Is Logs: Improving Code Completion by Learning from
Anonymous IDE Usage Logs [55.606644084003094]
そこで本研究では,IDEのユーザからコンプリート利用ログを収集する手法を提案する。
機械学習ベースのモデルをトレーニングして、完成候補をランク付けします。
評価の結果,過去のユーザ動作ログに基づいてトレーニングした単純なランキングモデルを用いることで,コード補完エクスペリエンスが大幅に向上した。
論文 参考訳(メタデータ) (2022-05-21T23:21:26Z) - Leveraging Language to Learn Program Abstractions and Search Heuristics [66.28391181268645]
LAPS(Language for Abstraction and Program Search)は、自然言語アノテーションを用いて、ライブラリとニューラルネットワークによる合成のための検索モデルの共同学習をガイドする手法である。
最先端のライブラリ学習システム(DreamCoder)に統合されると、LAPSは高品質なライブラリを生成し、検索効率と一般化を改善する。
論文 参考訳(メタデータ) (2021-06-18T15:08:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。