論文の概要: Reviewer2: Optimizing Review Generation Through Prompt Generation
- arxiv url: http://arxiv.org/abs/2402.10886v1
- Date: Fri, 16 Feb 2024 18:43:10 GMT
- ステータス: 処理完了
- システム内更新日: 2024-02-19 14:37:51.135120
- Title: Reviewer2: Optimizing Review Generation Through Prompt Generation
- Title(参考訳): Reviewer2: プロンプト生成によるレビュー生成の最適化
- Authors: Zhaolin Gao, Kiant\'e Brantley, Thorsten Joachims
- Abstract要約: 本稿では、Reviewer2と呼ばれる効率的な2段階レビュー生成フレームワークを提案する。
従来の作業とは異なり、このアプローチは、レビューが対処する可能性のある側面の分布を明示的にモデル化する。
アスペクトプロンプトでアノテートした27k論文と99kレビューの大規模なレビューデータセットを生成します。
- 参考スコア(独自算出の注目度): 27.379753994272875
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Recent developments in LLMs offer new opportunities for assisting authors in
improving their work. In this paper, we envision a use case where authors can
receive LLM-generated reviews that uncover weak points in the current draft.
While initial methods for automated review generation already exist, these
methods tend to produce reviews that lack detail, and they do not cover the
range of opinions that human reviewers produce. To address this shortcoming, we
propose an efficient two-stage review generation framework called Reviewer2.
Unlike prior work, this approach explicitly models the distribution of possible
aspects that the review may address. We show that this leads to more detailed
reviews that better cover the range of aspects that human reviewers identify in
the draft. As part of the research, we generate a large-scale review dataset of
27k papers and 99k reviews that we annotate with aspect prompts, which we make
available as a resource for future research.
- Abstract(参考訳): LLMの最近の発展は、著者の作業改善を支援する新しい機会を提供する。
本稿では、著者が現在のドラフトの弱点を明らかにするllm生成レビューを受けることができるユースケースを想定する。
自動レビュー生成の初期手法はすでに存在するが、これらの手法は詳細を欠いたレビューを生成する傾向にあり、人間のレビュー作成者による意見の範囲をカバーしていない。
この欠点に対処するため,我々はreviewer2と呼ばれる効率的な2段階レビュー生成フレームワークを提案する。
以前の作業とは異なり、このアプローチはレビューが対処する可能性のあるアスペクトの分布を明示的にモデル化する。
これによって、より詳細なレビューが、ドラフトで人間レビュアーが特定する側面の範囲をカバーできることが示されます。
研究の一環として,27k論文の大規模レビューデータセットと,アスペクトプロンプトに注釈を付ける9kレビューを作成し,今後の研究のリソースとして利用できるようにした。
関連論文リスト
- AI-Driven Review Systems: Evaluating LLMs in Scalable and Bias-Aware Academic Reviews [18.50142644126276]
我々は,人選好のアリーナを用いて,人選好と自動レビューのアライメントを評価する。
我々は、LLMを微調整して人間の好みを予測し、LLM同士の真っ向からの戦いにおいて、どのレビューが好まれるかを予測する。
我々は、公開可能なarXivおよびオープンアクセスのNatureジャーナルのレビューをオンラインで公開し、著者が研究論文をレビューし、改訂し、品質を改善するのに役立つ無料サービスを提供しています。
論文 参考訳(メタデータ) (2024-08-19T19:10:38Z) - Review-LLM: Harnessing Large Language Models for Personalized Review Generation [8.898103706804616]
大規模言語モデル(LLM)は、優れたテキストモデリングと生成能力を示している。
パーソナライズされたレビュー生成のためのLLMをカスタマイズするReview-LLMを提案する。
論文 参考訳(メタデータ) (2024-07-10T09:22:19Z) - LLMs Assist NLP Researchers: Critique Paper (Meta-)Reviewing [106.45895712717612]
大規模言語モデル(LLM)は、様々な生成タスクにおいて顕著な汎用性を示している。
本研究は,NLP研究者を支援するLLMの話題に焦点を当てる。
私たちの知る限りでは、このような包括的な分析を提供するのはこれが初めてです。
論文 参考訳(メタデータ) (2024-06-24T01:30:22Z) - A Literature Review of Literature Reviews in Pattern Analysis and Machine Intelligence [58.6354685593418]
本稿では, レビューを評価するために, 記事レベル, フィールド正規化, 大規模言語モデルを用いた書誌指標を提案する。
新たに登場したAI生成の文献レビューも評価されている。
この研究は、文学レビューの現在の課題についての洞察を与え、彼らの開発に向けた今後の方向性を思い起こさせる。
論文 参考訳(メタデータ) (2024-02-20T11:28:50Z) - LLMRefine: Pinpointing and Refining Large Language Models via Fine-Grained Actionable Feedback [65.84061725174269]
最近の大規模言語モデル(LLM)は、世代品質を改善するために人間のフィードバックを活用している。
LLMの出力を最適化する推論時間最適化手法であるLLMRefineを提案する。
機械翻訳、長文質問応答(QA)、話題要約を含む3つのテキスト生成タスクについて実験を行った。
LLMRefineは、すべてのベースラインアプローチを一貫して上回り、翻訳タスクの1.7 MetricXポイント、ASQAの8.1 ROUGE-L、トピックの要約の2.2 ROUGE-Lの改善を実現している。
論文 参考訳(メタデータ) (2023-11-15T19:52:11Z) - Generative Judge for Evaluating Alignment [84.09815387884753]
本稿では,これらの課題に対処するために,13Bパラメータを持つ生成判断器Auto-Jを提案する。
我々のモデルは,大規模な実環境シナリオ下でのユーザクエリとLLM生成応答に基づいて訓練されている。
実験的に、Auto-Jはオープンソースモデルとクローズドソースモデルの両方を含む、強力なライバルのシリーズを上回っている。
論文 参考訳(メタデータ) (2023-10-09T07:27:15Z) - Towards Personalized Review Summarization by Modeling Historical Reviews
from Customer and Product Separately [59.61932899841944]
レビュー要約(review summarization)は、Eコマースのウェブサイトで製品レビューのメインの考え方を要約することを目的とした、簡単ではないタスクである。
Heterogeneous Historical Review aware Review Summarization Model (HHRRS)を提案する。
我々は、レビュー感情分類と要約を共同で行うマルチタスクフレームワークを採用している。
論文 参考訳(メタデータ) (2023-01-27T12:32:55Z) - Can We Automate Scientific Reviewing? [89.50052670307434]
我々は、最先端自然言語処理(NLP)モデルを用いて、科学論文の第一パスピアレビューを生成する可能性について論じる。
我々は、機械学習領域で論文のデータセットを収集し、各レビューでカバーされているさまざまなコンテンツに注釈を付け、レビューを生成するために論文を取り込み、ターゲットの要約モデルを訓練する。
総合的な実験結果から、システム生成レビューは、人間によるレビューよりも、論文の多くの側面に触れる傾向にあることが示された。
論文 参考訳(メタデータ) (2021-01-30T07:16:53Z) - How Useful are Reviews for Recommendation? A Critical Review and
Potential Improvements [8.471274313213092]
本稿では,レビューテキストを用いてレコメンデーションシステムの改善を目指す,新たな作業体系について検討する。
実験条件やデータ前処理に変化はあるものの, 論文間で結果がコピーされていることから, 報告結果にいくつかの相違点がみられた。
さらなる調査では、リコメンデーションのためのユーザレビューの"重要"に関して、はるかに大きな問題に関する議論が求められている。
論文 参考訳(メタデータ) (2020-05-25T16:30:05Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。